
50

Towards Robustness of Deep Program Processing

Models—Detection, Estimation, and Enhancement

HUANGZHAO ZHANG, ZHIYI FU, and GE LI, Peking University, China

LEI MA, University of Alberta, Canada

ZHEHAO ZHAO, HUA’AN YANG, and YIZHE SUN, Peking University, China

YANG LIU, Nanyang Technological University, Singapore

ZHI JIN, Peking University, China

Deep learning (DL) has recently been widely applied to diverse source code processing tasks in the soft-
ware engineering (SE) community, which achieves competitive performance (e.g., accuracy). However, the
robustness, which requires the model to produce consistent decisions given minorly perturbed code inputs,
still lacks systematic investigation as an important quality indicator. This article initiates an early step and
proposes a framework CARROT for robustness detection, measurement, and enhancement of DL models
for source code processing. We first propose an optimization-based attack technique CARROTA to gener-
ate valid adversarial source code examples effectively and efficiently. Based on this, we define the robustness
metrics and propose robustness measurement toolkit CARROTM, which employs the worst-case performance
approximation under the allowable perturbations. We further propose to improve the robustness of the DL
models by adversarial training (CARROTT) with our proposed attack techniques. Our in-depth evaluations
on three source code processing tasks (i.e., functionality classification, code clone detection, defect predic-
tion) containing more than 3 million lines of code and the classic or SOTA DL models, including GRU, LSTM,
ASTNN, LSCNN, TBCNN, CodeBERT, and CDLH, demonstrate the usefulness of our techniques for ❶ effec-
tive and efficient adversarial example detection, ❷ tight robustness estimation, and ❸ effective robustness
enhancement.

CCS Concepts: • Software and its engineering → Software testing and debugging; • Computing

methodologies→ Artificial intelligence;

Additional Key Words and Phrases: Source code processing, big code, adversarial attack, robustness enhance-
ment

This research is supported by the National Key R&D Program of China under Grant No. 2020AAA0109400, and the National
Natural Science Foundation of China under Grant Nos. 62072007, 61832009, 61620106007. Lei Ma is supported by Canada
CIFAR AI Program, NSERC Discovery Grant of Natural Sciences and Engineering Research Council of Canada, as well as
JSPS KAKENHI Grant No. 20H04168 and JST-Mirai Program Grant No. JPMJMI20B8, Japan.
Authors’ addresses: H. Zhang, Z. Fu, G. Li (corresponding author), Z. Zhao, H. Yang, Y. Sun, and Z. Jin (corresponding
author), Peking University, China; emails: {zhang_hz, ypfzy, lige, zhaozhehao, chrisyoung, yizhe, zhijin}@pku.edu.cn; L.
Ma, University of Alberta, Canada; email: ma.lei@acm.org; Y. Liu, Nanyang Technological University, Singapore; email:
yangliu@ntu.edu.sg.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2022 Association for Computing Machinery.
1049-331X/2022/04-ART50
https://doi.org/10.1145/3511887

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 3, Article 50. Pub. date: April 2022.

https://orcid.org/0000-0002-0324-4591
https://orcid.org/0000-0001-7300-9215
mailto:permissions@acm.org
https://doi.org/10.1145/3511887
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3511887&domain=pdf&date_stamp=2022-04-09

50:2 H. Zhang et al.

ACM Reference format:

Huangzhao Zhang, Zhiyi Fu, Ge Li, Lei Ma, Zhehao Zhao, Hua’an Yang, Yizhe Sun, Yang Liu, and Zhi Jin.
2022. Towards Robustness of Deep Program Processing Models—Detection, Estimation, and Enhancement.
ACM Trans. Softw. Eng. Methodol. 31, 3, Article 50 (April 2022), 40 pages.
https://doi.org/10.1145/3511887

1 INTRODUCTION

Over the past decade, deep learning (DL) has made lots of progress and has achieved state-of-

the-art (SOTA) performance for many applications across domains, e.g., image processing, speech
recognition, natural language processing (NLP), medical diagnosis. In the software engineer-

ing (SE) community, we have also witnessed a recent increasing trend of adopting DL for various
source code processing tasks. Up to the present, DL could achieve SOTA performance in terms
of accuracy or F1-score for many tasks of source code processing such as functionality classifi-
cation [95], clone detection [85], method naming [2], code completion [53], and code comment
generation [40]. Some of these techniques have further been developed as industrial solutions to
accelerate software development productivity such as the code completion toolkits TabNine and
aiXcoder.1

While achieving competitive performance in terms of accuracy or F1-score in the field of source
code processing, an important quality indicator, the robustness of DL model, still lacks systematic
investigations so far. A robust model is supposed to make consistent predictions when the input
code snippet is slightly perturbed, and robustness is the metric to measure how robust a source
code processing model is. Ideally, analysis at the program semantic level would be preferable, since
most of the source code processing tasks tend to approximate the semantic meanings and relations
of the code snippets, e.g., code snippet functionality classification and code snippet clone detection.
However, existing DL techniques mostly work on code snippets that often have high flexibility and
variety, making the model robustness even more important. For instance, in a malware detection
system, such naturally occurring or intentional variety may deceive and bypass the DL detector,
sending flawed code to downstream processing modules. Such non-robustness could be fatal to
the whole system.

In practice, source code corpus naturally exhibits diversity during the software development
process. For example, developers with different coding styles often implement the same task in
different ways. Even for the same developer, she/he could program the same task differently un-
der different situations (e.g., at the time in the middle of a week or on Friday shortly before the
weekend). Similarly, the same algorithm or functionality might be implemented based on different
libraries, leading to many variants of the code snippets. To adapt to source code diversity, ideally,
a DL model, such as a malware detector, should behave consistently (i.e., robustly) upon the code
variants with the same semantics. Otherwise, if a variant even with some minor perturbations
(e.g., with some identifiers changed) causes the inconsistent prediction, then the DL model should
not be deployed, potentially hindering its wide adoption in the real-world software development
scenarios. Specifically, from the perspective of security, the adversarial attack makes intentional
transformations upon the code to create the aforementioned variants (also known as adversarial
examples) to bypass the DL model, even leading to possible failure of the entire system. In security-
relevant tasks, such as malware detection or defect detection, adversary allows the attacker to di-
rectly bypass the DL detector by exploiting the carefully designed code variants, sending flawed
code to downstream processing modules. It would cause fatal error to the whole system.

1See https://www.tabnine.com/ and https://www.aixcoder.com/en/#/ for details of TabNine and aiXcoder.

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 3, Article 50. Pub. date: April 2022.

https://doi.org/10.1145/3511887
https://www.tabnine.com/
https://www.aixcoder.com/en/#/

Towards Robustness of Deep Program Processing Models 50:3

Robustness has been extensively studied over the past several years in classic DL application do-
mains, e.g., image processing [34, 49, 67, 76], speech recognition [18, 70, 74], and natural language

processing (NLP) [5, 26, 27, 44, 94]. As more and more DL solutions are proposed for tasks in the
SE community, they also raise concerns that, besides high accuracy, to what extent the robustness
of the current SOTA source code processing DL models are. In the previous work, Metropolis-

Hastings Modifier (MHM) [93] made a preliminary study and spotted the non-robust issues in
the DL source code classification models. The DL-based code functionality classifiers and code
clone detectors can be misled to produce erroneous outputs given perturbed source code inputs,
where the identifiers are iteratively randomly renamed in the manner of Metropolis-Hastings sam-
pling. MHM takes the very first step to detect the non-robust issue, but to the best of our knowl-
edge, it still lacks a general framework for systematic robustness analysis and enhancement of DL
models in the context of source code processing.

In practice, adversarial attack is commonly used to estimate the robustness of a DL model under
the worst-case perturbations, where a stronger adversarial attack technique gives more accurate
approximation on the true robustness. In the source code context, the adversarial attack and robust-
ness analysis become more challenging due to the multiple unique constraints and requirements.
Existing robustness analysis on image or speech voice cases are mostly based on distances in Eu-
clidean space. The robustness can be defined as the largest norm ball (i.e., Lp norm) such that all
inputs after perturbations still reside inside the norm ball without changing the prediction result
of a DL model. On contrary, the source code is discrete and strictly follows the formal grammar
(e.g., context-free grammar), which makes the robustness measurement difficult to be defined by
distances in the Euclidean space. Only code snippets that follow the grammar are valid and can be
used for robustness analysis and estimation.

To bridge this gap, in this article, we propose a general framework CARROT (Code
AdveRsarial-attack-based RObustness measurement and Training) for DL model robustness
detection, measurement, and enhancement in the context of source code processing, which are
the essentials of many software engineering tasks in the era of big code [1]. We first propose
an effective and efficient adversarial attack technique CARROTA specially designed for DL of
source code processing with gradient guidance. Based on this, we propose robustness metrics and
the measurement toolkit CARROTM for robustness approximation. Furthermore, we propose the
robustness enhancement technique CARROTT based on adversarial training.

To approximate the robustness and address the unique characteristics of source code processing
in DL, the design of our adversarial attack CARROTA takes the following properties into consider-
ation: ❶ Grammar validity. The generated code (adversarial example) must be compilable (i.e.,
grammar-valid) and preserves the semantics of the original code snippet. ❷ Generation Effective-
ness. The attack should be strong to enable the robustness issue detection in the huge space under
complicated constraints. ❸ Generation efficiency. The generation process should be efficient to
be feasible in practice. ❹ Diversity. The attack algorithm should identify diverse potential code
segment modifications and be able to perform perturbations at multiple levels.

To be specific, CARROTA does not constrain the perturbations with Lp norms as used in image
processing.2 Instead, it applies rule-based constraints embedded within the attacking techniques,
where the robustness is assessed by the performance of the model under a set of perturbation (i.e.,
code transformation) patterns. In such a case, the more effective attacker helps to obtain the more
accurate robustness estimation. Although the previous proposed MHM [93] is capable to produce

2Adversarial attack is widely used for robustness estimation. However, unlike continuous image space, where Lp norms can
be adopted to constrain the perturbations, the source code space is discrete and non-Euclidean, which makes the Euclidean
Lp norms unsuitable.

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 3, Article 50. Pub. date: April 2022.

50:4 H. Zhang et al.

grammar valid adversarial examples, it lacks diversity and only performs identifier-level perturba-
tions. In addition, it also lacks efficiency, the renaming process of which is iteratively uniformly
sampled, with a large computational overhead, where the gradient information is not fully lever-
aged either. To further address these challenges, we design CARROTA in a way that any grammar
valid synonymous transformation is feasible, and the gradient information is incorporated to guide
the searching process for adversarial examples. With the proposed adversarial attack method, it
enables to make accurate quantitative estimation and effective enhancement of the DL model ro-
bustness for source code. Based on this, we propose robustness metrics CARROTM to estimate the
robustness bound, and toolkit CARROTT for robustness enhancement.

To demonstrate the usefulness of our proposed framework, we perform in-depth evaluations
on three typical source code processing tasks (i.e., functionality classification, clone detection, de-
fect prediction) containing a total of more than 3 million lines of code, and seven classic or SOTA
DL models, including GRU, LSTM, ASTNN [95], LSCNN [42], TBCNN [62], CodeBERT [28], and
CDLH [85] for each task. The results demonstrate that: ❶ the DL models with high accuracy or
F1-score might not be robust, as the simple random baseline approach (RW) can easily reduce the
performance of the evaluated models by more than 40%. ❷ CARROTA generates adversarial ex-
amples effectively, which on average reduces the performance of the evaluated models by 87.2%
on token-level, outperforming the SOTA MHM method (75.5%). In particular, for the defect pre-
diction task, CARROTA even reduces the performance (i.e., F1-score) of GRU, LSTM, ASTNN, and
LSCNN to almost zero. ❸ CARROTA generates adversarial examples efficiently, with an average
time of 2.4 seconds and invocation number of 192 to successfully generate an adversarial example,
outperforming the MHM that takes 5.8 seconds and 457 invocations. ❹ CARROTM also enables to
estimate the robustness more accurately with a tighter bound. The robustness bounds achieved by
CARROTM are much tighter than RW and MHM baselines. In particular, for the defect prediction
task, CARROTM confines the robustness bound of GRU, LSTM, ASTNN, and LSCNN to nearly zero.
❺ CARROTT is useful for robustness enhancement of DL models, as the robustness increases to
5.3 times on average compared with the original models, which is 1.7 times higher than the MHM
methods. Specifically, in functionality classification, the robustness of LSTM after CARROTT is
even improved to 13.8 times.

Overall, the main contributions of this article are summarized as follows:

• We propose an adversarial attack technique CARROTA for the DL models in the context
of source code processing. To be efficient and effective, the attack technique adopts the
optimization-based technique that uses gradient information for source code perturbation.
To be diverse, the attack is designed to work at different perturbation levels and locations.
• Based on our attack method, we further propose robustness metrics and method CARROTM,

which enables more accurate quantitative approximation on the robustness of DL models.
• After detecting adversarial examples and measuring the robustness, we further propose the

adversarial retraining method CARROTT to enhance the robustness of the DL models.
• These proposed techniques are integrated as a general framework CARROT for systematic

robustness detection, measurement, and enhancement of DL models for source code process-
ing. Our in-depth evaluations on three typical source code processing tasks and multiple
classic or SOTA DL models demonstrate its effectiveness and usefulness.

As more and more DL models are used for source code domains in the SE community, the robust-
ness of the DL models can be a big concern, which directly impacts its generality and effectiveness
under diverse scenarios. Until this far, however, the robustness issue for source code has not re-
ceived enough attention with limited progress made by existing work. The results of our article
find that the current state-of-the-art DL models in the context of source code may not perform so

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 3, Article 50. Pub. date: April 2022.

Towards Robustness of Deep Program Processing Models 50:5

well, as it seems in terms of robustness, although achieving rather high accuracy, F1 score, and so
on. As an important quality indicator, we call for the attention of SE researchers and practitioners
to take the robustness into consideration during designing and evaluating new DL techniques for
source code. Our proposed framework CARROT is open-sourced and publicly available3 to provide
the support for further systematic robustness research of DL models for SE researchers in the era
of big code [1].

2 RELATED WORK

In this section, we will discuss the most relevant works to this article, including DL for source code
processing tasks, general purpose adversarial learning, formal verification of the DL models, DL
model testing, traditional fuzzing testing, traditional mutation testing, and program obfuscation.

2.1 Source Code Processing by DL

Quite a lot of progress has been recently made on automated source code processing by DL tech-
niques, which could be largely categorized as classification tasks and generation tasks. In this
section, we only discuss the most relevant DL-based works to this article. More comprehensive
progress about the field can be referred to the recent survey on big code processing [1].

The DL model in a classification task makes classification based on a transformed parameterized
representation of the source code. Mou et al. [62] propose the tree-based TBCNN for functionality
classification. Huo and Li [42] propose the structural LSCNN for defect prediction. Wei and Li [85]
propose CDLH for code clone detection. Gupta et al. [36] propose NeuralBugLocator for bug local-
ization. Wang et al. [82] propose MatchGNet for malware detection. These approaches are classic
solutions to DL for source code processing, and they are the backbones and the basis of the current
SOTA models. More recently, Alon et al. [4] propose AST-path-based Code2Vec for program encod-
ing. Zhang et al. [95] propose the AST-based ASTNN for source code representation and verify its
capacity in multiple downstream classification tasks. Wang et al. [83] employ FA-AST and graph

neural networks (GNN) for code clone detection. Feng et al. [28] employ the transformer-based
architecture and propose the pre-trained CodeBERT for code representation in general purpose.
The listed models are among the SOTA solutions to DL for classification tasks in SE.

A DL model for generation task takes code snippets or natural language descriptions as input,
but outputs a sequence of information, e.g., code snippets, comment texts, method names, and so
on. Gu et al. [35] propose DeepAPI for API sequence generation. Allamanis et al. [2] propose convo-
lutional attention networks for method naming. Li et al. [53] propose pointer mixture networks for
code completion. Hellendoorn et al. [39] propose DeepTyper for type inference. Hu et al. [40] pro-
pose DeepCom for code comment generation. Alon et al. [4] and Alon et al. [3] propose code2vec
and code2seq for code encoding and generation. Generation tasks are often based on code clas-
sification, as the generation process can be seen as a sequence of classifications. For example, at
each timestep, a typical generation model makes a classification as the current output, based on
the input (e.g., token sequence, abstract syntax tree) and the previous outputs.

In this article, as an early step to construct the automated framework and study robustness
in source code processing, we mostly focus on DL models for source code classification tasks,
i.e., functionality classification, code clone detection, and code defect prediction. Also, we select
our subject DL models based on generality and performance. Therefore, we choose seven classic
or SOTA models, including the classic sequential GRU and LSTM, the SOTA AST-based ASTNN,
the classic structural LSCNN, the classic tree-based TBCNN, the transformer-based pre-trained
CodeBERT, and the classic task-oriented CDLH (specially designed for code clone detection). The

3We have open sourced this project at the GitHub repository https://github.com/SEKE-Adversary/CARROT.

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 3, Article 50. Pub. date: April 2022.

https://github.com/SEKE-Adversary/CARROT.

50:6 H. Zhang et al.

required data format covers token sequence (GRU, LSTM, and CodeBERT), statement structure,
(LSCNN) and AST (ASTNN, TBCNN, and CDLH). The architecture covers recurrent (GRU, LSTM,
and ASTNN), recursive (CDLH), convolutional (LSCNN and TBCNN), and transformer (CodeBERT)
neural networks. The design of the models covers task-oriention (CDLH), program representation
(GRU, LSTM, ASTNN, LSCNN, TBCNN), and pre-training for general purpose (CodeBERT).

2.2 Adversarial Learning

Adversarial learning, including adversarial example, adversarial attack, and adversarial training,
draws much more attention regarding the DL quality (e.g., reliability, security, and safety). The
adversarial vulnerability of machine learning models has been revealed years ago. For instance,
against spam mail filtration models, spam messages bypass the model by misspelling the bad words
or inserting the good words [9, 13]. Adversarial machine learning involves mainly three strategies:
evasion [8, 10, 63], which is similar to the concept of adversarial attack; poisoning [8, 10, 11, 47],
which injects malicious examples into the training data to disrupt model (re)training; and model
stealing [16, 84], which reconstructs a black-box model and steals the training data. In this article,
we focus on the evasion attack. More comprehensive progress about adversarial machine learning
can be referred to the survey [12].

As DL has begun to dominate the field of artificial intelligence, the vulnerability and robustness
of DL models become research hotspots. The vulnerability of DL models was first discovered in im-
age classification tasks [76]. Later, the gradient-based and optimization-based perturbations were
intensively studied in the field of image processing, such as FGSM [34], BIM [49], and JSMA [67].
However, these techniques are not suitable for DL models of source code processing due to two
major challenges. ❶ There are no direct norm ball constraints in code space, as the Lp norm be-
tween two separate tokens can hardly be defined in discrete code space. Although, an alternative
way is to compute the Lp norm in the embedding space, where the discrete tokens are mapped to
continuous vectors. This leads to the other challenge. ❷ Jumping along the projection of gradient
from one token is very likely to result in an invalid token. In the embedding space, which is often
high-dimensional, a small jump from a token vector may lead to a vector that does not correspond
to any valid token. Therefore, techniques such as FGSM are not quite suitable for DL in source code
processing. It is not until recently, the adversarial examples are discovered in sequence signal pro-
cessing tasks, such as speech recognition [17, 70, 74] and NLP [5, 26, 27, 44, 94]. Still, the existing
SOTA attack techniques are not suitable for source code either, because the strict constraints formu-
lated by lexical, syntactical, and grammatical rules cannot be easily ensured. Although the recent
proposed MHM [93] is capable to discover valid identifier-level perturbations for source code pro-
cessing, which iteratively performs random renaming of identifiers and leverages reject sampling
in the manner of Metropolis-Hastings (M-H) approach [22, 38, 61], as discussed earlier, MHM
cannot produce diverse and higher-level perturbations, such as statement perturbations, and lack
of efficiency, due to the computational overhead of M-H and the neglection of gradient guidance.

Different from existing attack techniques, the proposed CARROTA applies semantic equivalent
transformation, which is grammar-valid, semantic-preserving, and extensible. Furthermore, we
incorporate gradient information into CARROTA to guide the effective adversarial attack process.
CARROTA is not only able to generate adversarial perturbations with higher quality, but also pro-
vides more accurate robustness estimation (CARROTM) and more effective robustness enhance-
ment (CARROTT).

2.3 Verification and Testing of DL Models

Formal verification of DL models, achieved by solving a minimax problem (defined later by
Equation (6)), provides a formal guarantee on the robustness of DL models. Mixed-integer

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 3, Article 50. Pub. date: April 2022.

Towards Robustness of Deep Program Processing Models 50:7

linear programming (MILP) solves the minimax problem directly with high computational
cost [15, 21, 56]. Other researchers transform it into an SAT problem and solve it utilizing
Satisfiability Modulo Theory (SMT) solvers [45]. However, these verification techniques are at
an experimental phase, and they can hardly scale to deep and large sequential models in the real
world, i.e., they are not quite practical. Incomplete methods are also proposed by solving a convex
relaxation of the verification problem [86, 88] or computing an approximate upper bound using
bound propagation [41]. However, bound propagation accumulates error as the model grows deep
and at last produces meaningless loose boundary. In particular, the recently proposed POPQORN
[48] is designed for RNN models, but it works only on small models in short-sequence dataset,
such as serialized MNIST. The scalability is still not satisfying yet.

Testing techniques are also proposed to detect the defects (incorrect behaviors) of DL models
in the context of image processing. Most approaches are based on fuzzing testing, which automat-
ically generates inputs to try to trigger, monitor, and detect exceptions of the target application
[54]. We introduce and discuss the traditional fuzzing techniques later in Section 2.4. In the field
of image processing, DeepXplore [68] performs differential testing to detect the inconsistencies of
DL models for the same task. TensorFuzz [65] develops coverage-guided fuzzing to detect errors
in the model. DeepTest [78] and DeepHunter [91] generate new tests based on basic image trans-
formation with coverage feedback. In the safety-critical scenario of automated driving, DeepRoad
[97] generates tests by using GAN that performs more advanced scene transformation. There is a
major difference between fuzzing and our proposed CARROT in this article—fuzzing focuses on er-
ror detection within the target, from the perspective of testing, while CARROT detects, estimates,
and enhances the robustness as an intact framework from the perspective of adversary. Still, it
is quite a reasonable research direction of employing fuzzing to test DL models. However, as an
early step to analysis robustness of DL for SE, it is not our major goal of this article, and we leave
it for future exploration. Meanwhile, test criteria are also proposed to measure the testing suffi-
ciency, such as neuron coverage in DeepXplore [68], major functional coverage and corner case
coverage in DeepGauge [60], MC/DC coverage in DeepConcolic [75], and surprise adequacy [46].
DeepReduce [98] selects representative examples from the whole test set to efficiently test the DL
model. More comprehensive discussion on DL verification and testing could be referred to the re-
cent surveys [90, 96]. In our proposed CARROTM, we adopt the testing-like approach to estimate
the robustness of DL models for source code process. To be more specific, CARROTM tests against
the DL model with multiple adversarial attack approaches to verify whether the decisions from
the DL model are consistent.

Existing works of DL verification and testing are mostly carried out in the classic DL application
scenarios (e.g., image, speech). This article focuses on source code processing, which is different
and more challenging due to the discrete input space and rigid constraints caused by compilation
rules of programming languages. As there is an important potential direction that leverages DL for
diverse SE tasks, we keep this article relevant to the SE community. We also make a very early step
to systematically study the robustness of DL models in typical SE tasks to understand the current
SOTA models and try to find a possible direction for future improvement.

2.4 Fuzzing, Mutation Testing, and Program Obfuscation

Fuzzing is an automated software testing technique to discover vulnerabilities in the software [54].
It generates massive normal and abnormal test cases against the target software and tries to trigger,
monitor, and detect the exceptions such as crash or memory leak. Generation-based fuzzing gener-
ates test cases directly according a pre-defined configuration file, where the format of the test cases
is provided. There are mature open-sourced toolkits and frameworks for generation-based fuzzing,
including Spike [87], Sulley [30], and its successor BooFuzz [29]. Another mutation-based fuzzing

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 3, Article 50. Pub. date: April 2022.

50:8 H. Zhang et al.

generates test cases with some mutation rules upon a set of valid seed inputs [66]. Although the
working procedure of mutation-based fuzzing seems similar with the code transformations in this
article, as they both manipulate the inputs (test cases for fuzzing and code snippets in this article) to
probe the target (software applications for fuzzing and DL models in this article), the purposes are
quite different. Traditional fuzzing employs heuristic or random transformations to produce mas-
sive test cases with high ratio of valid formats [33, 71] to detect plausible exceptions in the target
software; while in this article, CARROT aims to not only detect the non-robust issue, but also esti-
mate the worst-case robustness and further enhance the adversarial resilience. Still, adopting the
idea of fuzzing testing in DL is a reasonable research direction. There are many testing approaches
for DL employing fuzzing testing proposed in recent years, as we have discussed in Section 2.2.
More comprehensive progress about fuzzing can be referred to the survey cited in Reference [54].

Mutation testing is a straightforward but powerful technique to evaluate the quality of software
tests [25, 37]. It generates mutants from the original code by modifying the code in small ways,
and the quality of software tests is measured by the percentage of mutants that they kill (detect)
[31, 32]. Although mutators for mutation testing seems similar with code transformation in this
article, as they all perform slight modifications upon the code, the semantic equivalence property
is totally different. The transformation operators in this article are supposed to modify the code
without changing the compilation or execution results; while mutators for mutation testing alters
the semantic meaning, such as replacement of Boolean subexpressions with true or false, replace-
ment of arithmetic operations with others (e.g., “+”⇔“-”), replacement of Boolean relations with
others (e.g., “<”⇔“<= ”), removing method body [64], and implemention in PITest [80]. Therefore,
traditional mutation testing is quite different from our proposed method, but for simplicity, we
borrow the term “mutation” in this article. More comprehensive progress about mutation testing
can be referred to the survey cited in Reference [20].

However, equivalence modulo input (EMI) fits the definition of semantic equivalent code
modification, which generates semantic equivalent code snippets to test compilers [50, 51, 55, 73].
The idea of EMI is to directly delete or insert dead code to create semantic-preserving mutations.
We absorb this idea into CARROTA, forming a dead code statement insertion/deletion attack,
namely, S-CARROTA.

Another relevant technique to this article is program obfuscation, which is a pivotal technique
to protect software intellectual property [92]. General obfuscation buries the useful code (or byte-
code) in the redundant logic or transforms it into a less comprehensible version to avoid code theft
and to protect the intellectual property of the developers. The transformation operators for obfus-
cation are semantically equivalent, but they usually change the code greatly from the perspective
of programmers. Classic work of obfuscation includes identifier scrambling [19], program item
reordering [58, 89], bogus control flow injection [6, 23, 72, 99], bytecode anti-disassembication
[24, 57, 69], and so on. Program obfuscation has also been deployed in some software develop-
ment platforms, such as ProGuard and DexGuard for Android.4 More advanced and comprehensive
progress about program obfuscation can be found in the survey cited in Reference [92].

There are two major differences between program obfuscation and our work. ❶ Obfuscation
transforms source code, bytecode, or intermediate code according to the concrete scenario, while
our proposed CARROT focuses on source code processing and manipulates source code only.
❷ Obfuscation aims to transform the program greatly to make it hard to understand, while CAR-
ROT is expected to minorly perturb the code to mislead the DL model. Nevertheless, from the
perspective of program obfuscation, we draw the classic ideas of identifier scrambling and bo-
gus injection, creating the identifier renaming I-CARROT and the dead code inserting S-CARROT.

4https://www.guardsquare.com.

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 3, Article 50. Pub. date: April 2022.

https://www.guardsquare.com

Towards Robustness of Deep Program Processing Models 50:9

Adversary of DL for source code processing may also leverage other existing transformations from
obfuscation, yet in this article, as an early step, we mainly study the aforementioned transforma-
tions, leaving others for future explorations. In addition, we must emphasize that CARROT treats
the transformations as internal modules and is likely to be compatible with the existing obfuscation
work and tools. Similarly, we leave these analyses and evaluations for our future work.

3 BACKGROUND AND OVERVIEW

In this section, we first provide the formulation for the general definition of source code classifi-
cation tasks. Then, we define the notations used in this article and briefly introduce the general
concepts of adversarial learning and robustness.

3.1 Source Code Classification

Source code classification. As the basis of DL for source code processing, we provide the general
formulation of source code classification. A classification model is supposed to take source code
snippets as inputs and predicts the classification labels. A typical well-labeled datasetD = (X,Y)
consists of a set of code snippets (X), where each xi ∈ X is a code snippet in the form of character
sequences, token sequences, abstract parsing trees (ASTs), control flow graphs (CFGs), data

flow graphs (DFGs), and so on, according to the model requirements for input format, and a set
of ground-truth labels (Y), in which each yi ∈ Y is a label corresponding to xi . In the rest of this
article, we denote the code-label pair with (x ,y).

Classification. The classifier C encodes the input code snippet x ∈ X, extracting the feature
vector F (x) = { f1 (x), f2 (x), . . . , fnf

(x)} utilizing neural networks. (Some neural networks may
produce feature matrices or tensors, which can be extended from F defined in this article.) Then
F (x) is fed into the classification layer to obtain the predicted probability of each class. The classi-
fication layer consists of a linear transformation layer (WSF (x) + bS), which maps the dimension
of F (x) (nf) to the number of classes (nc), and a softmax activation, which produces the normal-
ized predicted probabilities. At last, the model selects the class with the highest probability as the
final prediction, using an argmax function. The overall classification process can be deducted as:

C (x) = arg max
i

e (WS F (x)+bS)i∑nc

j=1 e
(WS F (x)+bS)j

, (1)

where e is the natural constant with the value of about 2.718 employed in the softmax activation,
nc is the number of classes,WS ∈ Rnc×nf and bS ∈ Rnc are parameters of the classification layer,
and (·)i means to take the ith element from the vector. Note that the DL models are designed to
leverage its network layers for feature extraction F (x).

3.2 Symbol Notations and Important Definitions

Table 1 summarizes the notations and symbols used in this article, besides which we further high-
light several important definitions below. These definitions will appear frequently in the rest of
this article, therefore, we present these important definitions here to impress the readers.

Training objective. The parameters of the model C , denoted as ΘC , are obtained by op-
timizing the instance-level loss function L(y,C (x)) over the entire training set D (t) , i.e.,
minΘC

∑
x,y∈D (t) L(y,C (x)).

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 3, Article 50. Pub. date: April 2022.

50:10 H. Zhang et al.

Table 1. Summary of Notations and Symbols in This Article

Scope Notation Definition

DL model

(x, y) A pair of input-output examples, i.e., the code and its label.
D (t), D (v), D (e) The datasets for training, validation, and testing.

F (x) The encoding function producing the feature vector of x .
C The DL model for source code processing.

ΘC The trainable parameters in C .
L(y, C (x)) The instance-level loss function.

Code validity

E The full set of compilable code snippets.
E (x, i) The execution results of snippet x given a valid input i .
A (x, y ; C) The set of adversarial examples of (x, y) against C .
X (x, x ′) The indicator function of semantic equivalency of snippets x and x ′.

T (x) The set of mutations of x .

Adversary
A The adversarial attack toolkit.

R (C) The true robustness of C .
R̃A (C) The estimated robustness of C by adversarial toolkit A.

Validity of source code. Code snippet x is valid if and only if it satisfies all lexical, syntactical
and grammatical rules, i.e., x ∈ E, where E is the full set of all compilable snippets. To be specific,
a valid code is error-free during compilation and can be further executed.

Semantic equivalency of source code. In general, the definition of semantic equivalency is
often very complicated. The semantic equivalence analysis of code snippets is even undecidable.
To facilitate the readers’ understanding, we adopt an incomplete approximation by checking the
consistency of the execution results. More specifically, given a pair of valid code snippets x1,x2, we
analyze whether they reach consistent execution results under the same input test case set with
a sufficient capacity. Another approximation to determine the semantic equivalency is to analyze
whether one code snippet can be transformed to the other under a set of well-designed equivalent
code transformation rules. In this article, we adopt the second approximation with equivalent code
transformations.

3.3 Adversary

Model robustness on a single example. The outputs of a robust classification model should
remain the same after some minor perturbations upon the input. We employ the binary-valued
function R (C |x ,y) to indicate whether the model C is robust on example pair (x ,y). R (C |x ,y) = 1
when C is guaranteed to be robust on x , if and only if the outputs are consistent, as:

C (x ′) = C (x), s.t. ‖x ′ − x ‖p ≤ δ , (2)

otherwise, the outputs are inconsistent, and R (C |x ,y) = 0. This definition forces the model to
produce consistent outputs under perturbations when we aim for R (C |x ,y) = 1.

Adversarial examples. In general, adversarial examples are generated from an input that can be
correctly handled by a DL model (i.e., C (x) = y) with some minor perturbations. An adversarial
example is very similar to its original counterpart from the human’s perspective but is incorrectly
handled to the inconsistent results with its original counterpart by the model. The set of adversarial
examples A can be defined as [14, 17]:

A (x ,y;C) = {x̂ |C (x̂) � C (x) = y ∧ ‖x̂ − x ‖p ≤ δ }, (3)

where x and x̂ are the original example and the adversarial example, respectively. Equation (3)
defines the untargeted adversarial examples, which mislead the victim DL model to an erroneous
prediction ŷ other than the ground-truthy (ŷ � y).5 Note thatC (x) = y in the first constraint is not

5As for targeted adversarial examples, the DL model is erroneously guided to a pre-determined ŷ . The definition becomes
A (x, y, ŷ ; C) = {x̂ |C (ŷ) = ŷ � C (x) = y ∧ ‖x̂ − x ‖p ≤ δ }.

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 3, Article 50. Pub. date: April 2022.

Towards Robustness of Deep Program Processing Models 50:11

necessary in terms of adversary. However, we prefer to study those correctly handled examples—if
an example x is wrongly predicted by the model originally, analyzing perturbations and robustness
upon such examples is not quite meaningful. Therefore, we add this constraint in this article. The
first constraint (C (x̂) � C (x) = y) indicates that x̂ should mislead C to an erroneous output, and
the second constraint (‖x̂ − x ‖p ≤ δ) limits the perturbation within the allowable Lp distance δ .

Adversarial attack. Adversarial attack is the process to generate adversarial examples from the
original inputs. A commonly adopted idea is to transform adversarial attack into an optimization
problem such as CW method [17]. FGSM [34] and BIM [49] further assume the allowable pertur-
bations are within a linear L∞ norm ball and jump along the direction of the gradient projection.
In this article, we focus on untargeted attack, where any x̂ causing C (x̂) � y is feasible, and the
optimization objective can be defined as:

max
x̂

L(y,C (x̂)), s.t. ‖x̂ − x ‖p ≤ δ . (4)

L(y,C (x̂)) shows the impact of the perturbation. By maximizing L(y,C (x̂)), we are able to eventu-
ally misleadC ifR (C |x ,y) = 0. In practice, the optimization process terminates when an adversarial
example is found, without having to exactly reach the global optima. Therefore, the generated ad-
versarial attack often finds a positive lower bound of the objective. Different attack methods may
find different bounds, and the less-effective attack may miss the adversarial examples.

Robustness analysis. We employ the proportion of examples in the dataset, on which the model
C is robust, as the metrics of robustness. The robustness of C on a set of data D is defined as:

R (C |D) =
1

‖D‖
∑

(x,y)∈D
R (C |x ,y). (5)

R (C |x ,y) = 1 suggests that Equation (4) is negative and R (C |x ,y) = 0 suggests that Equation
(4) is positive. Therefore, we can determine the robustness of a model given a pair of example by
computing the sign of Equation (4).

Directly solving Equation (4) with linear programming tools (e.g., MILP [15, 21, 56]) or SAT
solvers [45] can be unscalable and impractical for large-scale models, due to expensive computa-
tional cost. Bound propagation [41], which computes the bounds layer-by-layer to estimate Equa-
tion (4), however, accumulates error during propagation and the estimated bounds become rather
loose, as the models are deep. At last, adversarial attack estimates the lower bound of Equation
(4) and is more scalable. Adversarial attack gives the guaranteed non-robust proportion, while the
rest are not guaranteed to be robust.

Adversarial training. Adversarial training is an approach to improve the robustness of DL models
by optimizing the model parameters under the worst-case perturbations, which can be formulated
as a minimax problem defined as:

min
ΘC

∑
x,y∈D (t)

max
x̂

L(y,C (x̂)), s.t. ‖x̂ − x ‖p ≤ δ . (6)

Intuitively, ifC performs well under the worst-case perturbations found by the inner maximiza-
tion, then it is able to perform well under other perturbations, and therefore C becomes more
robust.

3.4 Overview of CARROT Framework

Figure 1 shows the overview of our proposed CARROT framework and its three major compo-
nents. The adversarial attack component CARROTA (the upper part of Figure 1) forms the basis

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 3, Article 50. Pub. date: April 2022.

50:12 H. Zhang et al.

Fig. 1. Overview of CARROT framework.

of other components for further analysis. Given a DL model and a code snippet (that the model
classifies correctly), CARROTA iteratively attacks the code snippet through semantically equiva-
lent code mutators (see Table 2 for examples) until an adversarial example (i.e., valid code snippet)
is obtained. In practice, the possible transformation searching space can be huge. Therefore, to be
effective, CARROTA mutates the code at multiple levels and generates possible candidates under
different candidate program locations; to be efficient, CARROTA incorporates gradient informa-
tion to guide the searching process where possible. Then, we design a robustness measurement
component CARROTM (the lower left part of Figure 1) based on our proposed robustness metrics
and pluggable adversarial attack toolkit. Besides our proposed attack techniques, the inclusion of
multiple adversarial attack algorithms enables more diverse adversarial attack searching towards
obtaining more accurate robustness estimation, i.e., with a tighter upper bound R̃ of the true ro-
bustness R. To further improve the robustness, the third component CARROTT (the lower right
part of Figure 1) is proposed to perform adversarial training. During training, we periodically aug-
ment the training set with adversarial examples obtained by adversarial attacks. This process is an
approximation to solve the minimax problem in Equation (6). Similar to CARROTM, CARROTT

is designed to include an adversarial attack toolkit as well to generate diverse perturbations.
Sections 5.2, and 5.3 elaborate these components in details, respectively.

4 CARROT ADVERSARIAL ATTACK

4.1 Adversarial Attack in Source Code Context

Perturbation constraint. Different from the classic DL application domains (e.g., image, speech
processing), adversary in source code processing cannot be constrained by Lp norm distances, due
to the discrete nature of source code space. Although edit distance (ED) is often used to limit the
perturbations in NLP, a small perturbation without altering the semantics for source code can cause
big changes in the source code sequence (e.g., variable renaming). Therefore, minor perturbations
upon the source code may lead to large EDs, making ED not suitable in the context of source

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 3, Article 50. Pub. date: April 2022.

Towards Robustness of Deep Program Processing Models 50:13

Table 2. Mutation Operations Applied in CARROTA

Type Operation Definition Example

Token
Var renaming Renaming user-defined global or local variables. “int a;”⇔ “int i;”

Data type renaming Renaming user-defined types. “struct a {}”⇔ “struct s {}”
Func renaming Renaming user-defined functions or methods. “void func() ;”⇔ “void foo() ;”

Stmt
Empty stmt ins/del Inserting or deleting empty statements. “a = b + 1;”⇔ “a = b + 1; ;”

Branch ins/del Inserting or deleting branches never being true. “a++; c++;”⇔ “a++; if (false); c++;”
Loop ins/del Inserting or deleting loops with false conditions. “i += j; j++;”⇔ “i += j; while(0); j++”

code. Note that “small” and “minor” here do not refer to the distance in the feature space (e.g.,
embedding), instead, they refer to semantic equivalence of the code snippets. In the image field,
where adversary is originally proposed and studied [34, 76], it is natural to constrain the distance
(e.g., Euclidean distance) of the images to keep the semantics. We inherit “small” and “minor”
to describe the perturbations in this article, referring to semantic equivalence of the perturbed
code snippet. In this article, we adopt the rule-based constraints to define the valid adversarial
perturbation space following the previous work [93]:

X (x ′,x) =
⎧⎪⎨
⎪
⎩

1, If x ′ ∈ E ∧ ∀i ∈ {valid inputs}.E(x′, i) = E(x, i)

0, Otherwise.
(7)

Intuitively, X (x ′,x) = 1 requires the generated examples to be valid and semantically equiva-
lent as its original counterpart. Unlike perturbation constraint in image processing or NLP, which
comes from the perspective of human beings, in source code processing, Equation (7) requires the
perturbation to be imperceptible and indistinguishable for compilers and executors.

Adversarial example. With the rule-based perturbation constraints (Equation (7)), we define the
adversarial example for source code as:

A (x ,y;C) = {x̂ |C (x̂) � C (x) = y ∧ X (x̂ ,x) = 1}. (8)

An important constraint in Equations (7) and (8) is that the adversarial example (code snippet)
preserves the semantics. However, proving the semantic equivalence of two code snippets is theo-
retically undecidable. It is often not easy either to check their concrete execution results on all the
possible inputs, which is often quite huge or even infinite to be practical. Therefore, we approx-
imate X with a set of mutation operators T (i.e., code transformation rules; see Table 2), where
x ′ = T (x) is guaranteed to satisfy X (x ′,x) = 1. Multiple transformations of x for k times, de-
noted as T k (x), still produce valid and equivalent snippets. Then, the code transformation-based
definition of adversarial examples is:

A (x ,y;C) = {x̂ |C (x̂) � C (x) = y ∧ x̂ ∈ T k (x)}. (9)

Adversarial attack. After introducing the rule-based constraints X and the mutation approxi-
mation T into Equation (4), the objective of adversarial attack in source code processing can be
defined as:

max
x̂

L(y,C (x̂)), s.t. x̂ ∈ T k (x). (10)

4.2 Previous MHM-based Method

Metropolis-Hastings Modifier (MHM) [93] regards the problem as a sampling problem, the
stationary (target) distribution π is defined as:

π (x ′) ∝ (1 − Prob(x ′,y;C)) · I{x ′ ∈ E}, (11)

where Prob(x̂ ,y;C) is the probability of y predicted byC , and I{x ∈ E} ensures the validity of the
sampled code. The sampling formulation is similar to the optimization problem (Equation (10)),

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 3, Article 50. Pub. date: April 2022.

50:14 H. Zhang et al.

because sampling from Equation (11) tends to sample examples with low Prob(x ′,y;C), which
finally leads to a large loss L(y,C (x ′)).

MHM is the current SOTA adversarial attack algorithm that attacks a DL classification model for
source code iteratively, which consists in two phases at each iteration. The first phase generates
a proposal to rename an identifier s , which is randomly sampled from all identifiers defined or
declared within the snippet, in the code x to a new identifier t , which is randomly sampled from
a candidate set, leading to a new snippet x ′. Also, the candidate set is randomly generated. The
second phase accepts or rejects the proposal according to the acceptance rate α , which can be
approximately computed by:

α = min{1,α∗} ≈ min

{
1,

1 − Prob(x ′,y;C)

1 − Prob(x ,y;C)

}
. (12)

Although MHM is capable to produce valid adversarial examples for source code processing
models, it is still limited with several drawbacks: ❶ MHM adopts a simple random-sampling-based
method, which takes much effort to probe on π . Gradient guidance should be considered to boost
the efficiency. ❷ MHM can only produce identifier-level perturbations, i.e., identifier renaming,
which lacks diversity, and a multi-level attacking algorithm is needed. ❸ MHM requires to access
the model for multiple times to generate the proposal and to compute the acceptance rate for M-
H, therefore, an easy-to-compute and easy-to-understand algorithm is needed. In this article, we
propose CARROTA to address these limitations and aim to propose a more effective and efficient
attacking technique with the guidance of gradient information.

4.3 CARROT Adversarial Attacker

The goal of adversarial attack is to find the code snippet that solves the optimization problem in
Equation (10). We propose CARROTA to generate valid adversarial examples by sharing the similar
spirit of hill climbing, which is an iterative strategy seeking for the potential optima. Compared
with other simulation approaches such as Metropolis-Hastings (M-H) sampling, the overhead
of hill climbing is often small, making it feasible in practice.

Objective transformation. Performing hill climbing to search for optimal x̂ of Equation (10) is
equivalent to minimizing the predicted probability of y by C , as follows:

min
x̂

Prob(x̂ ,y;C), s.t. x̂ ∈ T k (x) (13)

Equation (10) finds x̂ that causes y and C (x̂) to be the most different. Maximizing J , while min-
imizing Prob(y;C) achieves the same goal. In other words, Equations (10) and (13) are equivalent.
One benefit and purpose that we eventually choose to work on optimizing Equation (13) is that it
reduces the computational cost, since we no longer need to compute the loss L(y,C (x̂)).

CARROTA algorithm. CARROTA takes the DL modelC and code snippet as inputs and outputs
an adversarial example at its best effort. In Algorithm 1 (also see Figure 1), at ith iteration, the
mutators (see Table 2) are used to randomly generate a set of equivalent code variants from the
current code snippet xi−1 as candidates, denoted as T = {x∗1 , . . . ,x∗n } ⊂ T (xi−1), among which
all variants are able to pass the compilation and are equivalent to xi−1 (Line 3). Then, CARROTA

tests all candidates against C to determine whether an adversarial example is found (Lines 4–8).
If an adversarial example is not found, then the candidate with the lowest probability on y is
selected, denoted as x∗

idx
. When the probability decreases, x∗

idx
is passed to the next iteration as

xi ; otherwise, xi remains the same as xi−1 (Lines 9–14). The generation process continues until the
allocated budget (i.e., iteration size) exhausts or an adversarial example is found.

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 3, Article 50. Pub. date: April 2022.

Towards Robustness of Deep Program Processing Models 50:15

ALGORITHM 1: CARROT Adversarial Attacker Algorithm.
Inputs:

Source code classification model C , Data pair (x, y) ∈ D, s.t. y = C (x);
Max iteration m, candidate size n.

Outputs:
Adversarial example x̂ ∈ A (x, y ; C), or None (fail).

1: Initialize x0 ← x , prob ← Prob(x, y ; C)
2: for i in {1, 2, . . . , m } do
3: {x ∗1 , x ∗2 , . . . , x ∗n } ← Mutator(xi−1, n)
4: for j in {1, 2, . . . , n } do
5: if C (x ∗j) � C (xi−1) then

6: return x ∗j
7: end if
8: end for
9: idx ← arg minj Prob(x ∗j , y ; C)

10: if Prob(x ∗
idx

, y ; C) < prob then

11: xi ← x ∗
idx

, prob ← Prob(x ∗
idx

, y ; C)
12: else
13: xi ← xi−1
14: end if
15: end for
16: return None

CARROTA takes both effectiveness and efficiency into consideration during the design. Hill
climbing is similar to gradient descent, which is widely adopted in DL, as it is guaranteed to find
the local optima for non-convex objectives and global optima for convex objectives. The com-
putational efforts of CARROTA mainly consist of two parts—mutation operations and DL model
probing. We consider the invocation of DL models to estimate the computational cost, including
forward prediction and backward gradient propagation, because other arithmetic or logic opera-
tions in Algorithm 1 are much less time-consuming than one DL model invocation. Mutators in
CARROTA at most require one invocation of the model to obtain the gradient information, and in
other situations where the gradient is not employed, this invocation is not even required. There-
fore, The computational cost of mutators isO (1). However, at Line 9 in Algorithm 1, the probability
evaluation requires to invoke the DL model forn times (candidate size), and the computational cost
of this part is O (n). Therefore, the computational cost of CARROTA is O (n), and the overhead of
the mutators can be neglected. CARROTA seeks every opportunity to make the objective decrease,
leading to fewer invocations of C with higher efficiency. We further incorporate gradient infor-
mation into the mutation operation whenever available, guiding the searching process with even
higher efficiency. Although retrieving the gradients may cost much more time during the mutation
operations, it can effectively reduce the searching iterations.

4.4 Mutators for Candidate Code Generation

Mutators play an important role in CARROTA, which could potentially influence the diversity and
effectiveness of the attack. We design mutators to follow rule-based transformations that satisfy
the constraints in Equation (7). We also take the mutator set extensibility into consideration, where
different mutators could be easily integrated. As an early step in adversarial attack for source code,
in this article, we cover basic while efficient mutators at different levels for attacking integration
(please refer to “I-Mutator with gradient guidance” and “S-Mutator” in this section for detailed
discussion about the efficiency). In particular, we include six common mutators at two levels, i.e.,
token-level (I-Mutator) and statement-level (S-Mutator) (see Table 2).

The token-level mutators are inherited from the previous work for adversarial attack against DL
for source code processing [93]. They manipulate tokens in the tokenized source code sequences,
such as variable (global/local) renaming, data type renaming, function renaming (please refer to
“Token” in Table 2). The statement-level mutation performs higher-level transformations, which
involves dead statement insertion and deletion, including empty statement (e.g., “;” in C/C++)

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 3, Article 50. Pub. date: April 2022.

50:16 H. Zhang et al.

insertion/deletion, no-entry branch (e.g., “if(false);”) insertion/deletion and no-entry loop (e.g.,
“while(false);”) insertion/deletion (please refer to “Stmt” in Table 2). The statement-level opera-
tions are inspired by EMI [50], which generates semantically equivalent code snippets for compiler
testing by inserting or deleting dead code. In particular, no-entry branch and loop insertion and
deletion in Table 2 are absorbed from Hermes [73], which is an extension of EMI.

I-Mutator. I-CARROTA is CARROTA equipped with the I-Mutator, which performs multiple re-
naming operations. I-Mutator requires to gather all renamable candidate identifiers (e.g., variables,
structures, unions, enumerates, functions) that form the set S. S can be obtained by a fast scan
during pre-processing, and it is updated during the attack iterations. The target identifiers are
drawn from a set T (x , s) = ID(VC) − S, where x is the code snippet, s ∈ S is the identifier to
be renamed, and ID(VC) are legal identifiers in the vocabulary of C . This definition ensures the
validity of the renaming operation and avoids duplicated names.

There may be some concerns that identifier renaming can be too naive and trivial. Ideally, the
DL models for SE should be capable to resist against semantic equivalent transformations, such
as identifier renaming, for better generalization ability. However, as an early stage to study the
robustness of DL for source code processing, this article takes one step further towards the ulti-
mate goal. In addition, our experimental results reveal that the classic or even the current SOTA
DL models for source code processing cannot handle the renaming perturbations very well (please
refer to Section 6.2). The subject models are obtained following instructions from the original pa-
pers, and they produce comparable performance upon training, validation, and test sets for each
subject task. In short, our findings reveal that the DL models for source code processing contain
severe potential risks of non-robustness, even against simple perturbations such as identifier re-
naming. This article aims to better understand how well the current DL models for SE perform
against adversary, and we also would like to learn the challenges and the opportunities along this
research direction.

Simple random I-Mutator. A simple implementation of I-Mutator is to randomly draw t ∈
T (x , s), generating one single candidate by renaming s in x to t . CARROTA equipped with random
I-Mutator, denoted as I-RW,6 can be viewed as a degeneration of the previously proposed MHM
[93]. I-RW first generates a random renaming proposal and then accepts it if the probability on the
ground-truth class decreases, otherwise, I-RW rejects it. I-RW also serves as the random baseline
in this article.

I-Mutator with gradient guidance. The random sampling approach can be useful but inefficient,
since the attack space is quite large and simple random walking without gradient guidance would
miss the optimal candidate in many cases, as illustrated in Figure 2(a). Inspired by gradient-based
attack algorithms (e.g., FGSM [34] and BIM [49]) that optimize Equation (4) by jumping according
to the gradient direction, we incorporate gradient information, which can be produced by most
DL models for source code processing, into I-Mutator. In particular, I-Mutator generates s ∈ S,
which change towards similar directions to the gradient in the embedding space, as candidates.
The similarity is measured by a cosine-similarity-like scoring function, and I-Mutator chooses the
top-n identifiers. The candidate size is a hyper-parameter of I-Mutator. I-Mutator renames code
snippet x on identifier s based on the scoring function defined as:

S (t , s |x) =
e (t) − e (s)

‖e (t) − e (s)‖2
∂L(y,C (x))

∂e (s)
, (14)

6“RW” here refers to random walking, because the random renaming process is quite similar to the process of random
walking.

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 3, Article 50. Pub. date: April 2022.

Towards Robustness of Deep Program Processing Models 50:17

Fig. 2. An illustrative example to illustrate the effectiveness gaining from gradient guidance (best viewed
in color). The scatters are source code pieces in the embedding space, and the altitude refers to the loss L,
expressed by contour lines. The circle (◦) represents the code currently to be renamed (x), the crosses (×)
refer to code selected as candidates, and the dots (·) are the rest of the code snippets. The arrow (→) refers

to the gradient vector (
∂L(y,C (x))

∂e (x)), which points out the direction where L rises fastest. (a) MHM unifor-

mally randomly samples code snippets among all legal perturbations, regardless of the gradient guidance.
Therefore, MHM generates many random “bad” candidates, which cannot increase L or even miss the desir-
able perturbations. (b) However, with the guidance of gradient, I-CARROTA picks the code snippets in the
cone with the gradient as the axis, represented with dash lines (· · ·), which produces better candidates than
random sampling.

where t ∈ T (x , s) is the possible target identifier, e (s) and e (t) are embedding vectors of s and t , and
∂L(y,C (x))

∂e (s) is the embedding-level gradient vector of s . Equation (14), which is proportional to the
cosine similarity, measures the similarity between the changing direction of renaming s to t and the
gradient direction. By selecting the top-n identifiers that cause the similar changes as the gradient,
we introduce the gradient into I-CARROTA. This technique picks the code snippets lying within a
thin cone with the gradient as its axis (Figure 2(b)), and therefore includes the desirable candidate
identifiers, which leads to great increasing in L(y,C (x)). We select t1, . . . , tn = argn max S (t , s |x)
and renames in x to t1, . . . , tn to generate the equivalent candidates x∗1 ,x

∗
2 , . . . ,x

∗
n (see Line 3 in

Algorithm 1).
Unlike the completely random strategy in MHM, the gradient information brings two impacts

towards I-CARROTA: ❶ The computational cost does not increase due to the gradient operation.

I-Mutator is relevant to the DL model C for sure, since it needs to invoke C to obtain ∂L(y,C (x))
∂e (s) .

However, compared to the testing step in CARROTA (Lines 4–8 in Algorithm 1 invoke C for n
times), the overhead of this single invocation can be ignored. ❷ The efficiency of the iterative
process can be improved greatly with the gradient guidance. MHM randomly samples identifiers,
forming the candidate set, as shown in Figure 2(a). Such strategy does not consider the desirable
changing direction, instead, it mainly picks the “bad” candidates, which cannot increase the loss.
However, candidates from I-CARROTA (Figure 2(b)) are purposeful. These candidates are in a thin
cone with the gradient as its axis, and they are guided to perturb the code towards the direction of
increasing the loss. As I-CARROTA generates more effective substitution candidates than MHM,
I-CARROTA would overall show better effectiveness and efficiency.

Validity of I-Mutator. We have taken compilation and semantically equavalent issue during
transformation into consideration during design. By design, I-Mutator makes no influence to the
compilation of the perturbed code, because we rename only the user-defined identifiers, which
have no dependencies with the external environment. Meanwhile, identifier substitutions by I-
Mutator do not alter the execution as well, because the renaming towards a certain identifier results
in identical executable file after compilation as the original. Therefore, X (x ′,x) = 1 is guaranteed

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 3, Article 50. Pub. date: April 2022.

50:18 H. Zhang et al.

in I-Mutator. To be more specific, I-Mutator collects all renamable identifiers, forming S, from the
given compilable and executable code. For instance, given a single source code file, which includes
the whole program, S is collected by traversal searching for definition or declaration nodes in the
syntax tree. In a more complex scenario, where the project consists of multiple files with depen-
dency, I-Mutator compiles the whole project to obtain the syntax tree and still traverses the tree to
collect S. I-Mutator does not substitute those identifiers that may have dependencies from other
files that are not provided. Identifiers in S obtained in such approach exists in and only within the
given code itself. During perturbation, I-Mutator renames identifiers in the given code files and all
downstream files to ensure validity, i.e., X (x ′,x) = 1.

S-Mutator. S-CARROTA represents CARROTA equipped with the S-Mutator. S-Mutator inserts
(or deletes) three kinds of statements into (or from) the snippets, including ❶ empty statements,
e.g., “;” and “printf("");” in C/C++, ❷ no-entry branches, e.g., “if(false);”, and ❸ no-entry loops, e.g.,
“while(false);” and “for(;false;);”. For S-Mutator, we define an insertable statement set (denoted
as S) and collect all positions (denoted as P) in the code snippet, where statement insertion is
possible, by one pass scanning during pre-processing. Also, a set I is needed to record all deletable
statements.

At each iteration, S-Mutator first randomly decides whether to insert or delete a statement.
For insertion, S-Mutator randomly samples s ∈ S and p ∈ P, and inserts s into x at position p,
to generate a candidate. Otherwise, S-Mutator samples d ∈ I and deletes d in x . At the end of
an iteration, S-Mutator updates P and I according to the decision of S-CARROTA. In addition,
the probability of insertion is also adjusted at each iteration to avoid too many insertions. The
probability of insertion is defined as r = 1 − nins

nmax
, where nins is the number of currently inserted

statements and nmax is the max insertion threshold.
In S-Mutator, which is in fact black-box, gradient information is not incorporated due to two

major challenges. ❶ Most DL models for source code cannot produce statement-level gradient.
Although it can be tackled by aggregating (e.g., averaging) gradient vectors of all tokens in the
perturbed statement, such technique still cannot deal with the second challenge. ❷ S-Mutator per-
forms statement insertion and deletion, which are discrete and underivable operations. Gradient
for operations such as insertion or deletion is undefined and nonexistent. Therefore, we adopt
random searching in S-Mutator.

Still, S-CARROTA meets the same convergence with or without the gradient guidance. Hill
climbing in S-CARROTA can be viewed as a special case of Metropolis-Hastings (M-H) sam-
pling [22, 38, 61]. As long as the transition proposal in M-H is aperiodic and ergodic, given enough
iterations, the algorithm converges to the same stationary distribution. In S-CARROTA, the tran-
sition proposal includes insertion and deletion of three types of statements that are aperiodic and
ergodic, hence, S-CARROTA converges to the same stationary distribution.

Simple random S-Mutator. Similar to I-RW, we also implement a simple random baseline for
S-CARROTA, denoted as S-RW. S-RW generates one single candidate by inserting a random state-
ment s ∈ S into a random position p ∈ P or deleting a random statement d ∈ I from the snippet.
To be clear, the difference between S-Mutator and S-RW is the candidate size. S-Mutator generates
multiple (n) candidates of insertion or deletion, while S-RW produces only one candidate. There-
fore, S-RW is based on randomness, which creates a scenario similar to random walking, as the
name suggests.

Validity of S-Mutator. By design, S-Mutator does not alter the compilation and execution valid-
ity of the code after perturbation as well, because the inserted or deleted statements are dead code.
Such perturbations do not change the execution trace in data flow or control flow. The insertable

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 3, Article 50. Pub. date: April 2022.

Towards Robustness of Deep Program Processing Models 50:19

position P is collected from the complete syntax tree, where the statements can be easily split.
The inserted statements S are all in fact dead code, which does not change the execution results.
However, from the perspective of compilation process, the inserted dead code may be eliminated
due to some optimizations. For instance, GCC eliminates the dead code when the “-fdce” optimiza-
tion option is on. Some pre-processing with dead code elimination is very possible to invalidate
S-CARROTA. Nevertheless, as an early step, we notice that most DL models for SE do not contain
such pre-processing, making S-CARROTA still a potential threat to them.

5 CARROT ROBUSTNESS ESTIMATION & ENHANCEMENT

5.1 Robustness on a Single Example

As discussed in Section 3.3, the proportion of examples in the test set, on which the model C is
robust, can be used as the metrics of model robustness. To achieve this, we need to first determine
whether C is robust on a single given example pair (x ,y).

As Equation (2) indicates, model C is robust on x when the output remains accurate under any
perturbations that satisfy the constraints. We define robustness on a single example R (C |x ,y) in
source code processing as:

R (C |x ,y) =
⎧⎪⎨
⎪
⎩

0, If ∃x̂ ∈ T k (x), s.t. C (x̂) � C (x);

1, Otherwise.
(15)

If one can find an adversarial example for x towards C iteratively utilizing the transofrmations
(T), then C is not robust on x (R (C |x ,y) = 0). As we need to adopt the rule-based transforma-
tions in Equation (10) instead of the Lp norm constraint, robustness analysis becomes much more
challenging. Directly solving Equation (10) utilizing MILP is impractical due to the discrete and
complex constraint rules. The transformation rules also make the allowable perturbations discon-
tinuous (while the Lp norm constrains a regular norm ball), making the continuous approaches
(e.g., bound propagation) infeasible. Therefore, adversarial attack remains to be the most promis-
ing and practical solution to estimate (non-)robustness of DL models in source code processing.

During robustness estimation given mutator set T , the operations in T in Equation (10) are
allowed. We employ a set of attack algorithms as a toolkit A, which covers all allowable mutation
operations defined in T . The toolkit searches within the allowable perturbations. The estimated
upper bound of R (C |x ,y) with toolkit A is formally defined as:

R (C |x ,y) ≤ R̃A (C |x ,y) =
⎧⎪⎨
⎪
⎩

0, If find x̂ = A(x ,y;C);

1, Otherwise.
(16)

Where x̂ = A(x ,y;C) means that A is capable to find an adversarial example, otherwise all algo-
rithms in A cannot generate any adversarial examples. This estimation of R̃A (C |x ,y) is sound but
incomplete, becauseR (C |x ,y) is guaranteed to be 0 when an adversarial is found and no conclusion
could be guaranteed otherwise.

5.2 Robustness on a Dataset

The robustness R (C |D) of C on a set of examples D can be calculated as Equation (5). R (C |D)
shows the proportion of robust examples among all examples of a dataset. A higher R (C |D) indi-
cates that C is more likely to be robust on a new example.

Similarly to the scenario of a single example, we leverage a set of adversarial attack algorithms,
denoted as toolkit A, to estimate R (C |D) within the allowable perturbations T . The estimation

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 3, Article 50. Pub. date: April 2022.

50:20 H. Zhang et al.

process is shown in Figure 1, and the estimation is formulated as:

R (C |D) ≤ R̃A (C |D) =
1

‖D‖
∑

(x,y)∈D
R̃A (C |x ,y). (17)

R̃A (C |D) is also a sound but incomplete estimation to R (C |D), which provides an upper bound
of R (C |D). The diverse mutatorsT and powerful attacks will often obtain a more accurate estima-
tion R̃A (C |D) of R (C |D).

R̃ as likelihood. From the perspective of probability statistics, R̃A (C |D) is a likelihood of how
robust the model C is against attack toolkit A, retrieved on set D. To be more specific, R̃A (C |D)
provides a priori of R (C |D), where the attack toolkitA and the datasetD are the condition. There-
fore, as we incorporate more types of attack approaches into A, we have a higher chance to hit the
non-robust issue with adversarial examples generated by A, and finally this may lead to a more
accurate likelihood. Hence, R̃ ≈ 0 suggests that the subject model is very likely to be non-robust;
however, R̃ ≈ 1 indicates the model to be very likely robust.

Diversity of the mutator. Besides the size of D, the diversity of the mutators is also related to
how accurate R̃ estimates R. As aforementioned, we approximate semantic equivalency (Equation
(8)) with the semantic equivalent transformation (Equation (9)). It is incomplete, since there exists
many or even infinite transformation operators, while we may only employ a small part of the
them due to the algorithm capacity. By diversifying the transformation operators, we can cover
more types of semantically equivalent code snippets, reveal more possible risks (adversarial exam-
ples) in the DL model, and finally produce a more accurate estimation of the model robustness R.
Therefore, the diversity of the mutator is related to the effectiveness of the robustness estimation
in CARROTM.

CARROTM robustness estimation. CARROTMutilizes CARROTA (I-CARROTA and S-
CARROTA) as the adversarial attack toolkit to estimate the robustness of DL model for source
code processing. As we illustrated, CARROTA is effective, efficient, and multi-granular, which
is suitable for robustness measurement. CARROTM is also designed to be extensible, where new
attack methods and robustness metrics could be easily incorporated.

5.3 Robustness Enhancement

Adversarial training. Similar to adversarial examples and adversarial attack, adversarial training
for source code processing is defined by altering the constraints in Equation (6) as:

min
ΘC

∑
x,y∈D (t)

max
x̂

L(y,C (x̂)), s.t. x̂ ∈ T k (x). (18)

Previous adversarial training approaches largely fall into the following three categories: ❶ solv-
ing the minimax problem directly utilizing integer programming [56], ❷ minimizing the upper
bound of the inner maximization through bound propagation [41], and ❸ training the DL model
with adversarially perturbed examples [81]. The former two approaches may not be feasible for
source code processing tasks, due to the extremely high computational cost.

Adversarial training through data augmentation. We adopt the third approach and improve
the robustness of the DL models by training with adversarially perturbed examples, formulated
as:

min
ΘC

∑
x,y∈D (t)

L(y,C (x)) + λ
∑

x,y∈D (t)
A

L(y,C (x)), (19)

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 3, Article 50. Pub. date: April 2022.

Towards Robustness of Deep Program Processing Models 50:21

ALGORITHM 2: Data Augmentation Algorithm in CARROT Adversarial Training
Inputs:

DL model C , Dataset D, Adversarial attack toolkit A, Generation size n
Outputs:

Adversarially augmented dataset DA

1: Initialize DA ← D
2: for i in {1, 2, . . . , n } do
3: Sample x, y from D without replacement
4: DA ← DA ∪ {A(x, y ; CA) }
5: end for
6: return DA

ALGORITHM 3: CARROT Adversarial Training Algorithm.
Inputs:

Traditionally trained DL model C , Original training set D (t) , Adversarial attack toolkit A,
Generation size nд , Generation period Nд , Max epoch Ne

Outputs:
Adversarially trained model CA

1: Initialize nes ← 0, D ← DataAugment(C, D (t), A, nд), C0 ← RandomInit(C), CA ← C0

2: for e in {1, 2, . . . , Ne } do
3: if e mod Nд = 0 then

4: D ← DataAugment(CA, D (t), A, nд)
5: end if
6: Ce ← TrainEpoch(Ce−1, D);

7: if Performance(D (v) ; Ce) > Performance(D (v) ; CA) then
8: CA ← Ce , nes ← 0
9: else

10: nes ← nes + 1.
11: end if
12: if EarlyStopping(nes) then
13: return CA .
14: end if
15: end for
16: return CA .

where D (t)
A

is a static set of examples perturbed by toolkit A from a subset of D (t) against an

identically well-trained modelC0. λ and the size ofD (t)
A

are hyper-parameters, which regulate the
proportion of adversary during training.

CARROT robustness enhancement. CARROTT augments the training set with adversarial ex-
amples periodically. Algorithm 2 presents the data augmentation via adversarial examples. The
algorithm samples some (n to be more specific) of the examples in dataset D and generates ad-
versarial examples using toolkit A to augment the original D, forming the augmented dataset
DA. Algorithm 3 gives the details of adversarial training, and Algorithm 2 is invoked as a func-
tion named “DataAugment.” Especially, the augmented training set is updated every nд epochs,
with new adversarial examples (Lines 3–5). At the eth epoch, the model Ce is optimized upon the
augmented training set based on Ce−1 of the last epoch (Lines 6–14). Note that nes records how
many rounds of the model without performance improvement, according to which the algorithm
decides to early stop (Line 7). This periodic update helps to renew the perturbations against the
non-robustness of the current best model and improve the robustness of the model.

There are two major reasons for generating adversarial examples for only a part of the training
set. ❶ Training with all perturbed examples may lose too much performance (e.g., accuracy or F1-
score). During training, when the proportion of adversarial example increases, the accuracy would
first increase and then decrease after reaching a threshold, which is shown in the previous work
[93]. ❷ Generating adversarial examples from the whole training set is too time-consuming. For
instance, in our experiment, in OJClone, ASTNN attacked by I-CARROTA, the average adversarial
example generation time is 10.4 s (see Table 11) and the training set size is 41,581 (see Table 3).
Therefore, the process of the whole training set augmentation would cost about 120 hours (5 days).

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 3, Article 50. Pub. date: April 2022.

50:22 H. Zhang et al.

Table 3. Statistics of the Subject Datasets

Dataset Train # Test # Class # Vocab # LOC
OJ 41,581 10,395 104 10,283 ∼1,868K

OJClone 40,000 10,000 2 2,827 ∼278K
CodeChef 27,058 6,764 4 3,755 ∼1,168K

[†] Counted in the whole dataset (training + testing).
[�] Counted only in the training set.

In addition, in these 5 days, we can only generate adversarial examples from the whole training set,
without actually training the DL model. To facilitate the feasibility and practicalness of adversarial
training, we apply uniform sampling to randomly select which example in the training set is to be
perturbed.

6 EVALUATION

We implemented CARROT as an extensible framework in Python based on the DL framework
PyTorch (ver.1.6.0). With CARROT and its three major components, we perform a large-scale study
to investigate the following research questions:

RQ1 (Non-robust Issue): Are the classic or SOTA DL models of source code processing
robust against simple random perturbations?
RQ2 (Adversarial Attack): Are the proposed I-CARROTA and S-CARROTA able to attack
the DL models effectively and efficiently?
RQ3 (Human Evaluation): Are the adversarial examples produced by CARROT indistin-
guishable from the original examples to human beings?
RQ4 (Robustness Measurement): Whether or how robust are the DL models under our
proposed robustness metrics? Is CARROTM able to obtain a tighter estimation of the true
robustness?
RQ5 (Robustness Enhancement): Is CARROTT useful for enhancing the robustness of DL
models for source code processing?

6.1 Experiment Settings

Subject tasks and datasets. As a very early attempt to study the robustness of DL models for
source code processing, we select three representative source code classification tasks and datasets
(i.e., functionality classification OJ [62, 95], code clone detection OJClone [85, 95], code defect
prediction CodeChef), which are the basis for more complex generation tasks. Table 3 summarizes
the statistics of the subject datasets, which contains code snippets with more than 3.3 million
LOC. In particular, OJ and OJClone are based on the Open Judge benchmark dataset proposed by
Mou et al. 2016 [62] and are included in the recently proposed CodeXGLUE benchmark [59]. We
follow the previous work to pre-process OJ and OJClone [95] for further analysis. CodeChef is a
code defect prediction dataset originally created in this work. Compilable C/C++ code snippets are
retrieved from the CodeChef platform7 and labeled by the execution results from the platform, i.e.,
“OK” (no defect), “WA” (defect-1), “TLE” (defect-2), and “RE” (defect-3). The detailed definitions of
each class in CodeChef are listed in Table 4.

Subject models. For each dataset, we mainly investigate CARROT against three subject models
(i.e., GRU, LSTM, and ASTNN) used in previous work [53, 95]. To further verify the versatility of
CARROT, we also evaluate it against the classic LSCNN [42] and TBCNN [62] models, the recently
proposed transformer-based pre-trained CodeBERT [28] model, and the classic task-oriented

7https://www.codechef.com/.

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 3, Article 50. Pub. date: April 2022.

https://www.codechef.com/

Towards Robustness of Deep Program Processing Models 50:23

Table 4. Definitions of Different Classes in CodeChef

Lacel Class Definition Examples
0 OK No defect. Pass all test cases. –
1 WA Defect-1. Inconsistent outputs. Wrong answer
2 TLE Defect-2. Timeout. Infinite loop, high computational cost, etc.
3 RE Defect-3. Runtime error. Memory leak, divided by zero, etc.

CDLH [85] model, which is designed for code clone detection. We select these seven models from
the perspective of the data format, the model architecture, and the purpose of the design, which
have been explained in Section 2.1.

GRU and LSTM are the most classic sequential models adopted in the SE community. Although
current SOTA models do not directly apply LSTM or GRU architectures, these sequential architec-
tures are often utilized as backbones [3, 35, 42, 52, 53, 95]. E.g., DeepAPI [35] utilizes GRU backbone
and Seq2seq [7] architecture to generate API sequences from natural language descriptions, Deep-
Commenter [52] adopts GRU to generate code comments, and Code2Seq [3] employs LSTM to
process the node paths in the AST. Therefore, GRU and LSTM are two of the most representative
sequential architectures, and plenty of SOTA models for different tasks are derived from them.
In our experiments, we implement bidirectional GRU and LSTM with attention mechanism [7].
These two techniques (bidirection and attention) are often used together with GRU and LSTM
in the previous work [53]. Concretely, in our implementation, each GRU or LSTM layer consists
of one forward sub-layer and one backward sub-layer, and we utilize attention to compute the
probabilistic weights for weighted averaging of the hidden state sequence.

ASTNN [95] is designed for code representation and the downstream classification tasks. It is
one of the SOTA models in functionality classification and clone detection. ASTNN splits the AST
into a sequence of ST-trees (i.e., statements). It then utilizes recursive neural network to encode
the ST-trees and GRU to encode the ST-tree sequence. We reuse the project open-sourced by the
authors.8

LSCNN [42] is a classic architecture originally proposed to detect defects according to the source
code and the natural language description. Since our subject datasets do not contain the natural
language description, we employ only the LSCNN architecture to process the source code snippets,
removing the LSTM module for natural language processing. The LSCNN model handles the hierar-
chy of the code and extracts the vectorized code representation. LSCNN employs one-dimensional
convolution upon the statements of the code snippets and leverages LSTM to process the state-
ment sequences. At last, the model performs max-pooling upon the hidden-states, obtaining the
representations of the code snippets. Since the original paper does not provide the open-sourced
project, we implement the model by ourselves using PyTorch.

TBCNN [62] is another classic model to process the AST structures of the code snippets. TBCNN
utilizes tree-convolution to compute representations for each node in the AST and obtain the over-
all representation by max-pooling. Although the original paper provides an available project, it is
implemented with C++. Therefore, to facilitate our experiments, we implement TBCNN with the
Python packages of PyTorch and DGL (ver.0.6.1).9 After consulting the original authors, we make a
modification towards the original model for easier implementation—we employ a similar node em-
bedding approach as ASTNN [95] by considering the values of the terminal nodes (corresponding
to identifiers, names, etc.) and the types of the non-terminal nodes.

CodeBERT [28] is a recently proposed pre-trained model for programming and natural lan-
guages. It is based on the transformer [79] architecture. Instead of trained for specific tasks in an

8https://github.com/zhangj111/astnn.
9https://github.com/dmlc/dgl.

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 3, Article 50. Pub. date: April 2022.

https://github.com/zhangj111/astnn.
https://github.com/dmlc/dgl.

50:24 H. Zhang et al.

Table 5. Configurations of the Subject Models

Hyper-parameters GRU LSTM ASTNN LSCNN TBCNN CodeBERT CDLH
Train # : dev # 4:1 4:1 4:1 4:1 4:1 4:1 4:1
Vocab # in OJ 5,000 5,000 10,283 5,000 5,000 –
Vocab # in OJClone 2,000 2,000 2,827 2,000 2,000 2,000
Vocab # in CodeChef 3,000 3,000 3,755 3,000 3,000 –
Embedding size 512 512 128 512 256 128
Hidden size 600 600 100 400 256 128
Layers 2 2 1 1 Conv + 1 LSTM 1

Fixed
Pre-trained

Config

1
Dropout 0.5 0.5 0.2 0.5 0.1 0.1 0.1
Batch size 32 32 64 32 8 10 32
Max epoch 15 15 5(OJClone), 15(Others) 15 15 15 15
Optimizer Adam Adam AdaMax Adam Adam Adam Adam
Learning rate init value 0.003 0.003 0.002 0.001 0.001 0.00003 0.001
Learning rate decay Exp Exp No decay Exp Exp Exp Exp
Early stopping � � � � � � �

Table 6. Performance of the Subject Models

Model
OJ OJClone CodeChef

Acc (%) Prec (%) Recall (%) F1 (%) Prec (%) Recall (%) F1 (%)
GRU 93.8 93.5 71.4 81.0 73.0 72.7 72.6

LSTM 95.6 95.1 86.7 90.7 74.1 73.6 73.9
ASTNN 98.0 98.0 91.5 94.6 74.8 75.8 75.0
LSCNN 94.9 69.5 46.3 55.5 77.3 76.8 77.0
TBCNN 90.6 88.5 67.8 76.8 66.2 65.9 65.9

CodeBERT 96.9 0.0 0.0 0.0 76.6 75.9 76.2
CDLH – 85.1 68.3 75.8 – – –

end-to-end style, CodeBERT follows another paradigm named “pre-training and finetuning.” Code-
BERT, consisting of 12 layers of transformers, is pre-trained upon CodeSearchNet [43] dataset,
which consists of functions in six programming languages (Python, Java, JavaScript, Php, Ruby,
and Go) along with the natural language documentations. For a certain downstream task, we can
easily fine-tune the pre-trained model upon the specific dataset and obtain the fine-tuned Code-
BERT with good performance. In the recent proposed CodeXGLUE [59] benchmark, CodeBERT
achieves the SOTA performance on many different tasks. We use the open-sourced CodeBERT-
base model,10 supported by the Python package of transformers11 (ver.3.3.0, with PyTorch backend
support).

CDLH [85] is a classic model specially designed for code clone detection. It is based on N-ary
Tree-LSTM [77], processing the binarized AST recursively in a bottom-up manner to extract code
representations. At last, the model compares the representations of the code pair to determine
whether they are clones. Because the code is not open-sourced in the original paper, we implement
the model with PyTorch and DGL. For easier implementation, we make a modification towards the
model—instead of N-ary Tree-LSTM, we adopt another Child-sum Tree-LSTM [77], which does not
limit the number of child nodes in the tree, and therefore, we do not have to binarize the AST.

The detailed hyper-parameter configurations of these victim models are listed in Table 5. The
configuration of CodeBERT is fixed, because it is a pre-trained model, so there is a gray-shade box
in Table 5. Most of the subject models achieve competitive evaluation performance (e.g., accuracy,
F1 score) upon the studied tasks on the test set (see Table 6). Note that the F1 score of CodeBERT for
OJClone is 0.0, indicating it is not a satisfactory fine-tuned model. Our further analysis finds that
the accuracy (considering both the clone and the non-clone examples in the test set) is about 93%,
which is consistent with ratio of Clone and Non-Clone examples in OJClone (Clone : Non-clone

10https://huggingface.co/microsoft/codebert-base.
11https://github.com/huggingface/transformers.

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 3, Article 50. Pub. date: April 2022.

https://huggingface.co/microsoft/codebert-base.
https://github.com/huggingface/transformers.

Towards Robustness of Deep Program Processing Models 50:25

Table 7. Configurations of the Attack Algorithms

Attack algorithm
GRU, LSTM, ASTNN LSCNN, TBCNN, CodeBERT, CDLH

Candidate size Max iteration Candidate size Max iteration
I-RW 1 100 1 40
S-RW 1 20 1 40
MHM 40 50 10 20

I-CARROTA 40 50 5 40
S-CARROTA 40 20 5 40

[†] Candidate sizes of I-RW and S-RW are always just 1.

≈ 1 : 14). This issue caused by unbalanced dataset is also confirmed by the authors of CodeXGLUE
[59]. Because CodeBERT for OJClone is not satisfactory, we decide not to evaluate against it in our
experiment.12 CDLH for OJ and CodeChef in Table 6 is also empty, because it is specially designed
for code clone detection only.

Performance indicators. In OJ, we employ accuracy (Acc) as the indicator, because accuracy has
been adopted since TBCNN [62], which proposes this benchmark. In OJClone, previous work such
as ASTNN [95] and CDLH [85] adopts precision (Prec), recall, and F1-score (F1) as the indicators.
Especially, F1-score, which balances precision and recall, is widely adopted in the negative-positive
pair classification tasks. Therefore, we employ F1-score as the major indicator for OJClone. As for
CodeChef, which is a defect prediction dataset, there are four classes (“OK,” “WA,” “TLE,” and
“RE” in Table 4) and three negative-positive pairs, i.e., “OK”-“WA,” “OK”-“TLE,” and “OK”-“RE.”
Therefore, we list macro precision, recall, and F1-score in Table 6 and employ the macro F1-score
as the major indicator during our evaluation.

Baseline algorithms. To better understand the advantage of our technique, we select RW (I-RW
and S-RW) and the previous SOTA method Metropolis-Hastings Modifier (MHM) [93] as the
baseline attack algorithms for comparison. RW, as a previously introduced random baseline of
CARROTA, is a simple method that perturbs code snippets in the similar manner of random walk-
ing, which carries out token-level (I-RW) and statement-level (S-RW) perturbations. MHM is a
recently proposed SOTA adversarial attack approach, which performs iterative identifier replace-
ment based on M-H sampling [22, 38, 61]. The hyper-parameters of the attack approaches are listed
in Table 7.

Experimental configurations. We leverage CARROT to perform large-scale comparative exper-
iments to answer the RQs. For RQ1, we attack the subject models in OJ, OJClone, and CodeChef
(besides CodeBERT for OJ, CDLH for OJ and CodeChef) with the simple RWs (i.e., I-RW and S-RW)
to demonstrate the non-robust issue of the DL models. For RQ2, to demonstrate the effectiveness
and efficiency of CARROTA, we attack the subject models in OJ, OJClone, and CodeChef (besides
CodeBERT for OJ, CDLH for OJ and CodeChef) with I-CARROTA and S-CARROTA, along with
the baselines. The hyper-parameters of adversarial attack approaches are listed in Table 7. We uni-
formally sample a 20% subset from the test set and carry out adversarial attack upon the subset. In
each attack, we repeat this process for five times to counteract the randomness. For RQ3, we in-
vite nine independent volunteers (eight graduate students and one senior undergraduate student,

12In the original work of CodeXGLUE [59], CodeBERT for OJClone is obtained in two steps: ❶ fine-tune the model on the
training set of OJClone, and ❷ search an activation threshold of the output probability p (e.g., “Clone” if p > threshold;
“Non-Clone” otherwise) upon the validation set. In our setting, because OJClone is highly unbalanced (Clone : Non-Clone≈
1 : 14), the fine-tuned CodeBERT produces very low p given almost any input. The threshold is 0.01, with the searching
granularity of 0.01, suggesting that the model predicts almost all examples as non-clone. We have consulted the authors
of CodeXGLUE, and they also have confirmed this phenomenon. This result is not satisfactory for us, so we decide not to
evaluate against CodeBERT for OJClone in our experiment.

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 3, Article 50. Pub. date: April 2022.

50:26 H. Zhang et al.

Table 8. Numbers of Adversarial Examples to Augment
the Training Set During Adversarial Training

Toolkit
OJ OJClone

LSTM ASTNN LSTM ASTNN
MHM 2,000 2,000 2,000 500

I-CARROTA 2,000 2,000 2,000 1,000
S-CARROTA 2,000 2,000 2,000 500
CARROTA 4,000 4,000 4,000 1,500

all of whom major in computer science and have at least three years C/C++ programming and
software development experience) to rate the generated adversarial examples from CARROT, RW,
or MHM. We collect the original and the corresponding adversarial examples with the length con-
straint of 100 and filter those originally correctly predictred by the subject LSTM model. Among
the selected examples, we further choose those that have misled the LSTM model after pertur-
bation by all evaluated approaches. Finally, we retrieved 100 identifier-level perturbed examples
(25 {I-CARROTA,I-RW,MHM}+25 original). We randomly distribute the retrieved examples to the
volunteers and each example is evaluated by at least two volunteers. For RQ4, we utilize the re-
sults of adversarial attack produced in RQ2 to estimate the robustness of all the subject models
in the three subject tasks. CARROTA (I-CARROTA and S-CARROTA), RW (I-RW and S-RW), and
MHM (MHM only) are employed as toolkits in CARROTM estimation. Note that this article takes
an early step in the field of robust DL for source code processing; there is a lack of existing baseline
measurements. Therefore, we adopt the random RW and the previous MHM into the CARROTM

framework for comparison, which is a second best choice we can make. For RQ5, we perform ad-
versarial training on LSTM and ASTNN in OJ and OJClone, employing I-CARROTA, S-CARROTA,
CARROTA (I-CARROTA and S-CARROTA both), and MHM baseline as toolkits and attack the ad-
versarially trained models with all attack algorithms adopted in RQ2 to test their robustness. The
generation period (Nд in Algorithm 3) in CARROTT is 14. The sizes of DA (nд) are listed in Table 8.
The settings of adversarial attacks are the same as RQ2.

In summary, our evaluation consists of about 200 experimental configurations (about 100 in
adversarial attack, and 100 in adversarial training). All the experiments were run on a server of
Ubuntu 16.04 system with 32-core 2.10 GHz Xeon CPU, 125 GB RAM and 10 NVIDIA TITAN Xp
12 G GPUs. Overall, our evaluation takes more than 1,500 GPU hours to complete.

6.2 RQ1: Non-robust Issue

Table 9 includes the performance of the GRU, LSTM, and ASTNN subject models before and after
random perturbation by I-RW and S-RW. Δ indicates the relative performance decrease after the
random perturbation. A larger Δ indicates bigger performance drop, which suggests that the model
is less robust against the code perturbations. We can see that different DL models exhibit different
robustness performance drop under random perturbations, which can be dependent on both mod-
els and subject tasks. However, the obvious performance drops can be observed in most cases even
by simple random perturbations. On average, token-level random perturbations (I-RW) reduce the
performance of GRU, LSTM, ASTNN by 66.1%, 60.0%, 45.7% across all tasks, respectively. In partic-
ular, on CodeChef, the performance of all models decreases by more than 70%, suggesting they are
not robust under token-level perturbations. Similarly, the statement-level random perturbations
(S-RW) reduce the performance of GRU, LSTM, ASTNN by 40.7%, 34.0%, 29.9%, on average.

To demonstrate that the non-robust issue in general lies within many DL models for SE, we
further present the performance of LSCNN, TBCNN, CodeBERT, and CDLH before and after per-
turbation by I-RW and S-RW in Table 10. I-RW reduces the performance of the classic LSCNN
and TBCNN models by 51.9% and 65.2% across all three tasks on average, respectively, and the

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 3, Article 50. Pub. date: April 2022.

Towards Robustness of Deep Program Processing Models 50:27

Table 9. Performance of GRU, LSTM, and ASTNN Before and
After Adversarial Perturbations

Model Adversarial Attack OJ OJClone CodeChef

Acc(%) Δ(%) F1(%) Δ(%) F1(%) Δ(%)

GRU

None 93.8 – 81.0 – 72.6 –
I-RW 62.6 33.3 19.7 75.7 7.8 89.3
S-RW 68.3 27.2 56.3 30.5 25.8 64.5
MHM 26.4 71.6 4.8 94.1 0.2 99.7
I-CARROTA 6.4 93.2 0.7 99.1 0.0 100
S-CARROTA 18.9 79.9 8.9 89.0 2.2 97.0

LSTM

None 95.6 – 90.7 – 73.9 –
I-RW 76.4 20.1 23.0 74.6 10.9 85.3
S-RW 74.4 22.2 66.3 26.9 34.7 53.0
MHM 40.8 57.3 5.0 94.5 0.4 99.5
I-CARROTA 7.9 91.7 1.3 98.6 0.0 100
S-CARROTA 20.1 79.0 14.9 83.6 3.2 95.7

ASTNN

None 98.0 – 94.6 – 75.0 –
I-RW 62.1 36.6 70.5 25.5 18.8 74.9
S-RW 95.8 2.2 65.4 30.9 32.6 56.5
MHM 8.0 91.8 8.4 91.1 8.5 88.7
I-CARROTA 0.8 99.2 40.7 57.0 0.1 99.9
S-CARROTA 75.4 23.1 34.4 63.6 1.8 97.6

[†] In OJ, Δ = 1 − Acc
AccNone

, while in OJClone & CodeChef, Δ = 1 − F1
F1None

;

Δ suggests the effectiveness of the corresponding attack algorithm.

Table 10. Performance of LSCNN, TBCNN, CodeBERT, and CDLH Before
and After Adversarial Perturbations

Model Adversarial Attack OJ OJClone CodeChef

Acc(%) Δ(%) F1(%) Δ(%) F1(%) Δ(%)

LSCNN

None 94.9 – 55.5 – 77.0 –
I-RW 43.1 54.6 41.0 26.1 19.3 74.9
S-RW 63.0 33.6 17.7 68.1 51.1 33.6
MHM 51.3 45.9 28.8 58.1 26.1 66.1
I-CARROTA 6.8 92.8 32.6 41.3 0.1 99.9
S-CARROTA 48.4 48.6 7.5 86.5 33.6 56.4

TBCNN

None 90.6 – 76.8 – 65.9 –
I-RW 20.9 76.9 61.1 20.4 1.1 98.3
S-RW 85.5 5.6 66.8 13.0 53.5 18.8
MHM 30.1 66.8 12.7 84.5 17.5 73.4
I-CARROTA 15.3 83.1 49.6 35.4 1.2 98.2
S-CARROTA 79.2 12.6 49.1 36.1 40.0 39.3

CodeBERT

None 96.9 – 76.2 –
I-RW 52.3 46.0 17.4 77.2
S-RW 89.3 7.8 43.9 42.4
MHM 84.8 12.5 19.6 74.3
I-CARROTA 27.7 71.4 5.4 92.9
S-CARROTA 79.6 17.9

Not
Evaluated

24.4 68.0

CDLH

None 75.8 –
I-RW 27.0 64.4
S-RW 55.0 27.4
MHM 7.9 89.6
I-CARROTA 13.4 82.3
S-CARROTA

Not
Evaluated

33.6 55.7

Not
Evaluated

[†] In OJ, Δ = 1 − Acc
AccNone

, while in OJClone & CodeChef, Δ = 1 − F1
F1None

; Δ suggests

the effectiveness of the corresponding attack algorithm.

statement-level S-RW reduces the performance of LSCNN and TBCNN by 45.1% and 12.5% sepa-
rately. When it comes to the pre-trained and transformer-based CodeBERT, I-RW and S-RW re-
duce the performance by 61.6% and 25.1%, respectively, on average in OJ and CodeChef. As for the
task-oriented architecture, I-RW and S-RW reduce the performance of CDLH designed for clone
detection by 64.4% and 27.4%, respectively, in OJClone.

In this section, to answer RQ1, we do not seek comparisons between I-RW and S-RW, instead,
we focus on comparing the performance difference before and after the model is attacked by I-RW
or S-RW. As demonstrated in the last two paragraphs, we can find that for most subject models,
I-RW reduces the average performance across the three datasets by at least 40%, and S-RW re-
duces the average performance by at least 25%. These results reveal the non-robust issue of DL for
source code processing, since even the simple random baselines (i.e., I-RW and S-RW) are capable

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 3, Article 50. Pub. date: April 2022.

50:28 H. Zhang et al.

Table 11. Average Time Cost and Invocations to Generate an
Adversarial Example

Model Adv. Attack OJ OJClone CodeChef

T (s) Inv # T (s) Inv # T (s) Inv #

GRU
MHM 1.3 439 4.0 517 0.3 103
I-CARROTA 0.9 152 3.4 255 0.5 67
S-CARROTA 0.6 204 1.9 280 0.4 87

LSTM
MHM 1.8 482 3.0 587 0.3 112
I-CARROTA 1.1 218 2.1 274 0.5 65
S-CARROTA 0.4 225 1.0 301 0.5 103

ASTNN
MHM 4.5 1,269 28.2 426 9.2 177
I-CARROTA 3.2 123 10.4 319 1.2 92
S-CARROTA 8.6 381 3.9 198 1.4 113

[†] “T ” = average time cost, “Inv #” = average invocation number.

to reduce the performance of the classic or current SOTA models for SE greatly. The results imply
the non-robust limitations, challenges, and potential risks within DL for source code processing.
Therefore, we evaluate our proposed CARROT for robustness detection, estimation, and enhance-
ment in the following sections. In addition, we call on the SE community to pay attention to the
challenging but important non-robust issue of DL for source code processing.

Answer to RQ1: Although achieving competitive performance, the classic sequential GRU
and LSTM, the structural LSCNN, the tree-based TBCNN and ASTNN, the pre-trained Code-
BERT, and the task-oriented CDLH, all face the non-robust issues in OJ, OJClone, and
CodeChef against both token-level or statement-level random perturbations to a certain ex-
tent, indicating that the robustness issue could be a general concern to DL for source code pro-
cessing and should be investigated as an important indicator besides accuracy and F1-score,
and so on.

6.3 RQ2: Adversarial Attack

Effectiveness. Following RQ 1, Table 9 also shows the performance of GRU, LSTM, and ASTNN
models before and after perturbations by CARROTA along with all the baselines. On average across
all models and datasets, I-CARROTA and S-CARROTA reduce the performance of the DL models
by 93.2% and 78.8%, respectively, outperforming the other baseline configurations in most cases.
In particular, CARROTA reduces the F1-score of GRU, LSTM, and ASTNN in CodeChef by even
more than 95%.

To demonstrate the versatility of CARROTA, Table 10 lists the performance of LSCNN, TBCNN,
CodeBERT, and CDLH before and after perturbations by the attack algorithms. In these experimen-
tal configurations, I-CARROTA and S-CARROTA reduce the performance of the subject models on
average by 77.4% and 46.8%, respectively, also outperforming the other baselines in most cases.
Specifically, I-CARROTA reduces the F1-score of LSCNN, TBCNN, and CodeBERT by more than
90%.

There are also some exceptions in the results, where in ASTNN and TBCNN for OJClone, the
MHM baseline outperforms CARROTA greatly. There are two plausible explanations. ❶ Our in-
depth investigation on the intermediate log reveals that CARROTA, especially I-CARROTA, may
fall into the local optima, which may happen a lot during I-CARROTA attacking the subject mod-
els in OJClone. ❷ Note that both of the exceptions are related to OJClone. This indicates that in
code clone, the token-level adversarial attack algorithm may benefit from randomness a lot, as the
random sampling-based MHM outperforms the gradient guided I-CARROTA in several cases.

Efficiency. Table 11 shows the efficiency of CARROTA against GRU, LSTM, and ASTNN in line
with SOTA MHM algorithm. Due to the low effectiveness, we do not include the random method

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 3, Article 50. Pub. date: April 2022.

Towards Robustness of Deep Program Processing Models 50:29

Fig. 3. Efficiency curves of the attack algorithms in OJ against GRU and LSTM.

for efficiency comparison. The results show that CARROTA generates adversarial examples with
higher efficiency in all cases. On average, adversarial attack by I-CARROTA and S-CARROTA takes
2.6 and 2.1 seconds, 174 and 210 invocations, respectively, outperforming the SOTA MHM algo-
rithm that takes 5.8 seconds and 457 invocations. In particular, I-CARROTA generates an adversar-
ial example for ASTNN in OJ by only 123 invocations, which is 10 times more efficient than MHM.
Furthermore, we also plot the success rate at different invocation numbers (see Figure 3). We can
see that I-CARROT generates most of the examples in the early steps and quickly converges in suc-
cess rate. This not only demonstrates the efficiency of CARROTA, but also confirms the validity of
ourm selection.

Answer to RQ2: In general, CARROTA is capable to carry out adversarial attack against all
subject DL models in OJ, OJClone, and CodeChef. In particular, I-CARROTA demonstrates its
advantages in terms of both effectiveness and efficiency than MHM and random perturbations
in OJ and CodeChef, where the gradient information is utilized. The effectiveness, efficiency,
and naturally occurring diversity make CARROTA a feasible attacking algorithm.

6.4 RQ3: Human Evaluation

The general definition of adversarial examples requires the perturbations to be imperceptible to
human beings [76]. Although we constrain the source code adversarial examples to be equivalent
from the perspective of compilation and execution in Equation (8), we still would like to examine
whether the perturbations of the generated adversarial examples are perceptible to programmers.
Therefore, we carry out human evaluation by asking the programmers to distinguish whether the
code is original or perturbed.

Questionnaire. We design the questionnaire to investigate whether or not the generated pertur-
bations are perceptible to programmers from the perspective of human beings. The questionnaire
for each participant consists of 25 sets of questions, each of which follows a similar template like
the one shown in Table 12. All the adversarial examples (i.e., code snippets) come from the afore-
mentioned 100 retrieved adversarial examples (see Section 6.1).

The questionnaire provides a code snippet (original or perturbed) along with the problem de-
scription of the ground-truth class and consists of two rating questions and one counting question
to be filled by the volunteers. For the rating questions, the score ranges from −2 (bad) to 2 (good),
and 0 indicates neutral or undecidable. The volunteers are first asked to rate whether the code
matches the problem description, from −2 (cannot match) to 2 (match very well). Then, the volun-
teers are asked to rate if the code is understandable, from −2 (cannot understand at all) to 2 (easy
to understand). At last, we ask how many unusual parts (e.g., unnatural variables and function
names) in the code the volunteers can find in a relatively short time (20–40 sec). The “unusual

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 3, Article 50. Pub. date: April 2022.

50:30 H. Zhang et al.

Table 12. Questionnaire for Human Evaluation

ID Code Problem description

1

void main () {
int worker[<int>][<int>], i = <int>, j;
while(scanf(<str>, worker[i]) != EOF) {

worker [i]; i++;
}
for(j = i-<int>; j >= <int>; j--) {

if(j != <int>)
printf(<str>, worker[j]);

else
printf(<str>, worker[j]);

}
}

Given a sentence, output all words in inverted or-
der, and separate them with spaces.

Question Score
Match 2

(The code matches the desc. well.)
Understandable -1

(I can hardly understand the code.)
Unusual # 1

(The name “worker” is unusual.)

[†] In the code, “<int>” and “<str>” refer to integer and string constants, respectively.
[�] Items to be filled by the volunteers. In this table, we fill these items as an illustrative example.

Table 13. Human Evaluation Results Upon LSTM in OJ

Adv. Attack Match Understandability Unusual #
Rate Δ(%) Rate Δ(%) # Δ(%)

None 1.576 – 1.441 – 0.424 –
I-RW 1.222 22.5 1.167 19.0 1.019 140.3
MHM 1.474 6.5 1.333 7.5 0.965 127.6

I-CARROTA 1.446 8.2 1.250 13.3 0.839 97.9

[†] For match and understandability, Δ =
RateNone−Rate

RateNone
, while

for unusual count, Δ =
#−#None

#None
. Lower Δ suggests better

human evaluation result.

part” refers to those that do not conform to usual programming habits or other unwritten spec-
ifications or rules. Programmers are able to notice such unusual parts easily. For instance, the
identifier “worker” in Table 12 may be unusual, because the codes are written to invert the in-
put sentences (see the “Problem description”), where the functionality has no connection with the
identifier “worker.” The volunteers are asked to find these unusual parts through their intuition.

The evaluation results are listed in Table 13. We can first see that all attack approaches (I-RW,
MHM, and I-CARROTA) decrease the match and the understandability score from the original
examples (see the row of “None”). I-CARROTA outperforms I-RW baseline on all three metrics
and produces comparable match and understandability score to MHM but better unusual count.
In particular, the renaming operation from I-CARROTA is less noticeable to human beings, as
the average unusual count is about 0.839, less than 1.019 of random I-RW and 0.965 of random-
sampling-based MHM. These results suggest that incorporating gradient not only improves the
effectiveness and efficiency of the attack algorithm (Section 6.3), but also makes the perturbed
examples less distinguishable. A possible explanation is that with higher efficiency brought by the
gradient guidance, the attack algorithm makes fewer manipulations upon the code, resulting in
smaller perturbations.

Although the generated adversarial examples by I-CARROTA are less perceptible in terms of
unusual counts than other approaches, they are still distinguishable for human beings, since in
Table 13, the unusual counts of I-CARROTA are about twice that of “None” (the original examples).
In fact, generating imperceptible adversarial examples from the perspectives of both compilers/
executors (semantic equivalency) and human beings (unusual counts) is very challenging, because
the algorithm must balance between the semantics and the literal meanings during transformation.
As an early stage of studying the robustness of DL for source code processing, our work makes
one step further to produce less distinguishable examples, and these results are the best we can do
currently. We hope that this article may draw more efforts from the SE community and achieve
the imperceptibility of adversarial examples for code from the perspective of human beings.

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 3, Article 50. Pub. date: April 2022.

Towards Robustness of Deep Program Processing Models 50:31

Table 14. Robustness Estimation of GRU, LSTM, and ASTNN

Model Measurement OJ OJClone CodeChef

R̃ (%) Δ R̃ (%) Δ R̃ (%) Δ

GRU
RW 50.76 – 83.01 – 3.90 –

MHM 26.41 1.9 73.32 1.1 0.24 16.3
CARROTM 1.36 37.3 46.19 1.8 0.00 >500

LSTM
RW 62.77 – 85.26 – 8.32 –

MHM 40.81 1.5 77.01 1.1 0.31 26.8
CARROTM 1.40 44.8 47.58 1.8 0.00 >500

ASTNN
RW 61.53 – 95.31 – 13.00 –

MHM 7.98 7.7 86.90 1.10 9.08 1.4
CARROTM 0.79 77.9 84.70 1.13 0.03 433.3

[†] Δ =
R̃RW

R̃
gives robustness estimation improvement compared with

random method.

Table 15. Robustness Estimation of LSCNN, TBCNN, CodeBERT, and CDLH

Model Measurement OJ OJClone CodeChef

R̃ (%) Δ R̃ (%) Δ R̃ (%) Δ

LSCNN
RW 40.41 – 88.52 – 23.94 –

MHM 51.03 0.8 77.57 1.1 31.34 0.8
CARROTM 6.15 6.6 84.17 1.0 0.07 342.0

TBCNN
RW 20.70 – 94.41 – 1.26 –

MHM 30.81 0.7 54.94 1.7 17.26 0.1
CARROTM 14.64 1.4 90.84 1.0 1.26 1.0

CodeBERT
RW 51.13 – 21.84 –

MHM 84.75 0.6 20.58 1.1
CARROTM 26.13 2.0

Not
Evaluated 5.47 4.0

CDLH
RW 83.53 –

MHM 86.13 1.0
CARROTM

Not
Evaluated 64.22 1.3

Not
Evaluated

[†] Δ =
R̃RW

R̃
gives robustness estimation improvement compared with random method.

Answer to RQ3: CARROTA may be able to perform similar adversarial perturbations against
LSTM on OJ, as the generated code matches the description well and is easy to understand.
Furthermore, the renaming operations in I-CARROTA are less distinguishable than other base-
line approaches. However, the current I-CARROTA is still perceptible compared to the natural
original examples from the perspective of human beings, suggesting more efforts to be made
in future work.

6.5 RQ4: Robustness Measurement

Robustness estimation by various techniques. Table 14 shows the robustness estimation of
GRU, LSTM, and ASTNN by different methods. We can see that CARROTM gives much tighter
robustness upper bound estimation than the other methods across all settings. It indicates that
the effectiveness of the attack method is quite important for accurate robustness estimation. In
OJ, CARROTM achieves more than 50 and 19 times estimation improvement on average compared
with RW and MHM. Similar improvements could also be observed in OJClone and CodeChef. In
particular, in OJ and CodeChef, CARROTM estimates the robustness of GRU, LSTM, and ASTNN
to be less than 2%, which are very tight bounds.

Table 15 shows the robustness estimation of LSCNN, TBCNN, CodeBERT, and CDLH by
CARROTM along with the RW and MHM baselines. In general, the bounds estimated by
CARROTM are on average 40 and 51 times tighter than RW and MHM. In particular, in CodeChef,
CARROTM estimates the robustness of LSCNN, TBCNN, and CodeBERT to be less than even 6%.
It is peculiar that in OJ and CodeChef, the random-based RW is in general better than MHM. One
possible reason is the small configuration of the candidate set (10), which makes MHM degenerate

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 3, Article 50. Pub. date: April 2022.

50:32 H. Zhang et al.

Table 16. Robustness Resilience Gaining of LSTM and ASTNN Against Adversarial
Perturbations by Adversarial Training

Task Model Adversarial
Train Toolkit

Original

Acc (%)

I-RW S-RW MHM I-CARROTA S-CARROTA

Acc (%) Δ Acc (%) Δ Acc (%) Δ Acc (%) Δ Acc (%) Δ

OJ

LSTM

None 95.6 76.4 – 74.4 – 40.8 – 7.9 – 20.1 –
MHM 95.8 85.1 1.11 74.7 1.00 56.8 1.39 19.1 2.42 19.5 0.97

I-CARROTT 95.7 85.9 1.12 77.7 1.04 64.4 1.58 29.4 3.72 24.3 1.21
S-CARROTT 95.4 78.7 1.03 86.9 1.17 43.7 1.07 9.3 1.18 53.8 2.68
CARROTT 95.5 85.6 1.12 87.7 1.18 61.5 1.51 30.1 3.81 52.7 2.62

ASTNN

None 98.0 62.1 – 95.8 – 8.0 – 0.8 – 75.4 –
MHM 98.2 86.5 1.39 94.6 0.99 76.3 9.54 6.3 7.88 75.4 1.00

I-CARROTT 98.1 86.2 1.39 95.9 1.00 71.8 8.98 5.6 7.00 82.5 1.09
S-CARROTT 98.2 64.1 1.03 97.2 1.01 31.2 3.90 0.9 1.13 93.5 1.24
CARROTT 98.3 84.5 1.36 97.2 1.01 65.0 8.13 4.2 5.25 93.8 1.24

Original
F1 (%) F1 (%) Δ F1 (%) Δ F1 (%) Δ F1 (%) Δ F1 (%) Δ

OJClone

LSTM

None 90.7 23.0 – 66.3 – 5.0 – 1.3 – 14.9 –
MHM 92.2 43.9 1.91 71.1 1.07 10.3 2.06 1.6 1.23 12.9 0.87

I-CARROTT 92.7 58.1 2.53 66.6 1.00 17.2 3.44 5.8 4.46 13.0 0.87
S-CARROTT 84.1 13.9 0.60 69.7 1.05 2.6 0.52 0.3 0.23 21.5 1.44
CARROTT 92.1 37.4 1.63 79.3 1.20 9.7 1.94 2.6 2.00 34.3 2.30

ASTNN

None 94.6 70.5 – 65.4 – 8.4 – 40.7 – 34.4 –
MHM 86.0 75.3 1.07 78.2 1.20 33.6 4.00 37.6 0.92 46.5 1.35

I-CARROTT 89.3 67.9 0.96 68.0 1.04 13.3 1.58 50.1 1.23 46.7 1.36
S-CARROTT 94.5 78.5 1.11 92.2 1.41 7.1 0.85 38.5 0.95 79.9 2.32
CARROTT 93.8 78.2 1.11 87.4 1.34 19.5 2.32 49.3 1.21 76.2 2.22

[�] Δ = Acc
AccNone

or Δ = F1
F1None

, indicating the resilience of the model against the attack algorithm.

to total randomness. Another exception lies in OJClone, as MHM performs better than CARROTM

in LSCNN and TBCNN. This issue is related to the discussions in RQ2.

Robustness of the DL models. We compare the robustness of different models estimated by
CARROTM. The results indicate that the robustness of different DL models using different archi-
tecture might render differences in their robustness. For example, ASTNN might be more robust
than GRU and LSTM, as ASTNN gives similar R̃ to GRU and LSTM in OJ and CodeChef, but gives
much higher robustness estimation in OJClone. It is reasonable, because ASTNN takes ASTs as
inputs, which may contain more structural information about the snippet. Also, CodeBERT may
be more robust than LSCNN and TBCNN, as R̃ of CodeBERT is much higher than LSCNN and
TBCNN. It is sensible, as CodeBERT has more parameters and is pre-trained upon larger corpus.
Models in OJ and CodeChef may not be robust, as the true robustness is less than 10% in most
cases, while models in OJClone may be much more robust, as R̃ by CARROTM is above 40%. This
finding suggests that besides DL architectures, non-robust issues may also be highly related to
the datasets. Similar findings are also discussed in the context of image processing by Goodfellow
et al. [34].

Answer to RQ4: We demonstrate that CARROTM is capable to estimate a tight bound of the
true robustness of the DL models. In addition, the robustness issue might also be relevant
to the task dataset and the DL architecture, which should be paid attention to by the DL
researchers and practitioners for source code processing.

6.6 RQ5: Robustness Ehancement

Resilience against adversarial attacks. Table 16 shows the robust resilience (obtained by dif-
ferent attacks) of the DL models under different adversarial training toolkit. We adopt MHM, I-
CARROTT, S-CARROTT, and CARROTT (see Column 3) to perform adversarial training on LSTM
and ASTNN in OJ and OJClone. Then, the robustness of the corresponding obtained models are
estimated by different adversarial attacks (see Columns 5–14). Overall, adversarial training often

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 3, Article 50. Pub. date: April 2022.

Towards Robustness of Deep Program Processing Models 50:33

Table 17. Robustness Improvement of the Subject Models After Adversarial Training

Task Model
Adversarial

Train Toolkit
R̃CARROTM (%) Improve

OJ

LSTM

None 1.4 –
MHM 3.8 ×2.72

I-CARROTT 7.2 ×5.13
S-CARROTT 6.1 ×4.37
CARROTT 19.4 ×13.77

ASTNN

None 0.8 –
MHM 6.0 ×7.61

I-CARROTT 5.3 ×6.73
S-CARROTT 0.9 ×1.17
CARROTT 4.2 ×5.32

Task Model
Adversarial

Train Toolkit
R̃CARROTM (%) Improve

OJClone

LSTM

None 47.6 –
MHM 55.6 ×1.17

I-CARROTT 62.1 ×1.31
S-CARROTT 44.4 ×0.93
CARROTT 55.9 ×1.18

ASTNN

None 84.7 –
MHM 83.8 ×0.99

I-CARROTT 91.2 ×1.08
S-CARROTT 84.9 ×1.00
CARROTT 90.1 ×1.06

enables the improvement of the DL model resilience, to a different extent. For example, CARROTT

improves the model robust resilience against all attack algorithms, i.e., OJ LSTM to 2.0 times, OJ
ASTNN to 3.4 times, OJClone LSTM to 1.8 times, and OJClone ASTNN to 1.6 times, averaged across
all attacks. However, other methods might not be able to improve the robustness across all settings.
In particular, adversarial training with only token-level perturbations (i.e., MHM and I-CARROTT)
might not be resilience against statement-level perturbations (i.e., S-RW and S-CARROTA), and
vice versa. For example, in the case of OJClone LSTM, the performance even decreases to 87% af-
ter adversarial training (MHM) attacked by S-CARROTA. Therefore, to be robust against diverse
potential perturbations in practice, the inclusion of diverse perturbations is important. CARROTT

is designed to be extensible, where new perturbation mutators could be easily integrated. We leave
the inclusion of more advanced mutators in future work.

Robustness improvement. Table 17 shows the robustness improvement estimated by CARROTM.
Sharing the same configuration as Table 16, we estimate the robustness by CARROTM (equipped
with I-CARROTA and S-CARROTA) of DL models before and after adversarial training. We could
observe that, on average, the robustness of the DL models after adversarial training by CARROTT

increases to 5.3 times, higher than MHM in most cases, which has 3.1 times improvement on
average. For example, the robustness of LSTM in OJ after CARROTT even increases from 1.4% to
19.4% (13.8 times).

Answer to RQ5: CARROTT framework, especially equipped with the CARROTA toolbox, is
helpful for improving the robustness of DL models for source code. The results also indicate
that the inclusion of diverse perturbation mutators could be helpful for improving robustness
(by adversarial training) to be resilient against various perturbations in practice.

6.7 Threat to Validity

The subject dataset selection could be a threat to validity. We counteract it by selecting tasks and
datasets included in the CodeXGLUE benchmark [59], which are important and widely utilized.
Another threat could be the victim model selection. We counteract it by considering the repre-
sentativeness and the performance. We mainly study the most widely adopted and representative
GRU and LSTM (equipped with attention), which is the backbone of various of DL models for SE,
and we also select ASTNN, which is one of the SOTA models for functionality classification and
clone detection. Besides, we also evaluate adversarial attack approaches against many other mod-
els, including the classic LSCNN and TBCNN models, the pre-trained CodeBERT model, and CDLH
specially designed for clone detection. The subject models cover sequential models (GRU and
LSTM), hierarchical models (LSCNN), tree-based models (ASTNN and TBCNN), transformer-base

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 3, Article 50. Pub. date: April 2022.

50:34 H. Zhang et al.

pre-trained models (CodeBERT), and architectures specially designed for certain tasks (CDLH).
We also counteract it by following the guidance of the authors and the instructions in the original
papers [42, 62, 85]. We have tried our best to build and train the parameters in our experiments,
and the performance of our model is comparable with the original papers during our early-stage
experiments upon their datasets. Furthermore, the code transformation operation selection could
also be a threat to validity. We design the mutators by employing transformations in different lev-
els (token and statement) from the previous work [50, 93]. In human evaluation, the composition
of the volunteers could be a threat, too. We counteract it by choosing graduate and undergraduate
students majoring in computer science, with at least three years C/C++ programming and software
development experience. The results that I-CARROTA is still distinguishable in human evaluation
could also be a threat. We counteract this by comparing our method with other baselines. Gen-
erating imperceptible code adversarial examples for human beings with semantic equivalent con-
straints is still quite challenging at this moment and could be an important research direction in
the future. We have also tried our best to design our method, which obtains better results and out-
performs other existing approaches. We hope to propose novel techniques to continuously address
this challenge in our future work. At last, the randomness could also be a threat. We counteract it
by repeating the adversarial attack on a 20% uniformally sampled subset of the test set five times
and report the average results.

7 CONCLUSION & DISCUSSION

In this article, we propose CARROT, a general framework for robustness detection (CARROTA),
measurement (CARROTM) and enhancement (CARROTT) for DL models in the context of source
code processing. We demonstrate the potential risk within the DL models for source code process-
ing. Specifically, we find that all the subject models for evaluation cannot handle the semantic
equivalent perturbations very well. Our in-depth evaluations confirm the effectiveness and effi-
ciency of CARROTA in adversarial attack and the usefulness of CARROTT in adversarial training.
The results also indicate that our proposed robustness metrics R̃ serve as a suitable robustness
estimation.

At last, we provide several suggestions for developers to hopefully improve the robustness of
source code processing systems: ❶ Do a rough human review before feeding the code into the
DL model. Programmers are still capable to distinguish the adversarial examples in a short time,
as the human evaluation results suggest. ❷ Normalize the source code appropriately during pre-
processing. For instance, a DL model trained upon a normalized dataset that renames the first
identifier as “var1,” the second as “var2,” and so on, may resist I-CARROTA for sure, since the
renaming perturbations by I-CARROTA are removed during the normalization (pre-processing).
In this concrete suggestion, normalization refers to removing the known certain kinds of noises
and perturbations. To gain robustness against certain known kinds of adversarial attack, one of the
easiest ways is to normalize all noises and perturbations on this level directly, as the above example
illustrates. However, it is risk-taking, because such normalization may also remove those important
features and may decrease the performance of the DL model greatly. It would be a tradeoff between
robustness against specific perturbations and the evaluation performance. ❸ Adversarially train
model with diverse kinds of perturbations. The adversarial training results have demonstrated the
resilience gaining.

As an early step to study the robustness of the DL models for source code, our work confirms
that the SOTA DL models for source code processing may not be robust-resilient under simple
random perturbations. Considering the code variants often exist in practice software development,
besides high accuracy, we call for software engineering researchers and practitioners’ attention to

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 3, Article 50. Pub. date: April 2022.

Towards Robustness of Deep Program Processing Models 50:35

consider robustness when designing new DL solutions for source code processing. We have made
our framework publicly available and hope it would benefit the SE community towards building
more robust DL solutions for various SE tasks in the era of big code.

8 ACKNOWLEDGEMENTS

We would like to thank Wenhan Wang from Nanyang Technological University for his help in the
implementation of the subject DL models. We also would like to thank all the reviewers and the
editor for their long-term support to our work and constructive suggestions to this article.

REFERENCES

[1] Miltiadis Allamanis, Earl T. Barr, Premkumar T. Devanbu, and Charles Sutton. 2018. A survey of machine learning
for big code and naturalness. ACM Comput. Surv. 51, 4 (2018), 81:1–81:37. DOI:https://doi.org/10.1145/3212695

[2] Miltiadis Allamanis, Hao Peng, and Charles A. Sutton. 2016. A convolutional attention network for extreme summa-
rization of source code. In Proceedings of the 33rd International Conference on Machine Learning. JMLR.org, 2091–2100.
Retrieved from http://proceedings.mlr.press/v48/allamanis16.html.

[3] Uri Alon, Shaked Brody, Omer Levy, and Eran Yahav. 2019. code2seq: Generating sequences from structured repre-
sentations of code. In Proceedings of the 7th International Conference on Learning Representations. OpenReview.net.
Retrieved from https://openreview.net/forum?id=H1gKYo09tX.

[4] Uri Alon, Meital Zilberstein, Omer Levy, and Eran Yahav. 2019. code2vec: Learning distributed representations of
code. Proc. ACM Program. Lang. 3, POPL (2019), 40:1–40:29. DOI:https://doi.org/10.1145/3290353

[5] Moustafa Alzantot, Yash Sharma, Ahmed Elgohary, Bo-Jhang Ho, Mani B. Srivastava, and Kai-Wei Chang. 2018.
Generating natural language adversarial examples. In Proceedings of the Conference on Empirical Methods in Natural

Language Processing. Association for Computational Linguistics, 2890–2896. DOI:https://doi.org/10.18653/v1/d18-
1316

[6] Genevieve Arboit. 2002. A method for watermarking Java programs via opaque predicates. In Proceedings of the 5th

International Conference on Electronic Commerce Research (ICECR’02). Citeseer, 102–110.
[7] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2015. Neural machine translation by jointly learning to

align and translate. In Proceedings of the 3rd International Conference on Learning Representations. Retrieved from
http://arxiv.org/abs/1409.0473.

[8] Battista Biggio, Igino Corona, Blaine Nelson, Benjamin I. P. Rubinstein, Davide Maiorca, Giorgio Fumera, Giorgio
Giacinto, and Fabio Roli. 2014. Security evaluation of support vector machines in adversarial environments. CoRR

abs/1401.7727 (2014).
[9] Battista Biggio, Giorgio Fumera, and Fabio Roli. 2010. Multiple classifier systems for robust classifier design in adver-

sarial environments. Int. J. Mach. Learn. Cybern. 1, 1-4 (2010), 27–41. DOI:https://doi.org/10.1007/s13042-010-0007-7
[10] Battista Biggio, Giorgio Fumera, and Fabio Roli. 2017. Security evaluation of pattern classifiers under attack. CoRR

abs/1709.00609 (2017).
[11] Battista Biggio, Blaine Nelson, and Pavel Laskov. 2011. Support vector machines under adversarial label noise. In

Proceedings of the 3rd Asian Conference on Machine Learning. JMLR.org, 97–112. Retrieved from http://proceedings.
mlr.press/v20/biggio11/biggio11.pdf.

[12] Battista Biggio and Fabio Roli. 2018. Wild patterns: Ten years after the rise of adversarial machine learning. Pattern

Recog. 84 (2018), 317–331. DOI:https://doi.org/10.1016/j.patcog.2018.07.023
[13] Michael Brückner, Christian Kanzow, and Tobias Scheffer. 2012. Static prediction games for adversarial learning

problems. J. Mach. Learn. Res. 13 (2012), 2617–2654. Retrieved from http://dl.acm.org/citation.cfm?id=2503326.
[14] Sébastien Bubeck, Yin Tat Lee, Eric Price, and Ilya P. Razenshteyn. 2019. Adversarial examples from computational

constraints. In Proceedings of the 36th International Conference on Machine Learning (Proceedings of Machine Learning

Research), Kamalika Chaudhuri and Ruslan Salakhutdinov (Eds.), Vol. 97. PMLR, 831–840. Retrieved from http://
proceedings.mlr.press/v97/bubeck19a.html.

[15] Rudy Bunel, Ilker Turkaslan, Philip H. S. Torr, Pushmeet Kohli, and M. Pawan Kumar. 2017. Piecewise linear neural
network verification: A comparative study. CoRR abs/1711.00455 (2017).

[16] Nicholas Carlini, Florian Tramèr, Eric Wallace, Matthew Jagielski, Ariel Herbert-Voss, Katherine Lee, Adam Roberts,
Tom B. Brown, Dawn Song, Úlfar Erlingsson, Alina Oprea, and Colin Raffel. 2020. Extracting training data from large
language models. CoRR abs/2012.07805 (2020).

[17] Nicholas Carlini and David A. Wagner. 2017. Towards evaluating the robustness of neural networks. In Proceedings of

the IEEE Symposium on Security and Privacy. IEEE Computer Society, 39–57. DOI:https://doi.org/10.1109/SP.2017.49

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 3, Article 50. Pub. date: April 2022.

https://doi.org/10.1145/3212695
http://proceedings.mlr.press/v48/allamanis16.html
https://openreview.net/forum?id=H1gKYo09tX
https://doi.org/10.1145/3290353
https://doi.org/10.18653/v1/d18-1316
http://arxiv.org/abs/1409.0473
https://doi.org/10.1007/s13042-010-0007-7
http://proceedings.mlr.press/v20/biggio11/biggio11.pdf
https://doi.org/10.1016/j.patcog.2018.07.023
http://dl.acm.org/citation.cfm?id=2503326
http://proceedings.mlr.press/v97/bubeck19a.html.
https://doi.org/10.1109/SP.2017.49

50:36 H. Zhang et al.

[18] Nicholas Carlini and David A. Wagner. 2018. Audio adversarial examples: Targeted attacks on speech-to-text. In
Proceedings of the IEEE Security and Privacy Workshops. IEEE Computer Society, 1–7. DOI:https://doi.org/10.1109/
SPW.2018.00009

[19] Jien-Tsai Chan and Wuu Yang. 2004. Advanced obfuscation techniques for java bytecode. J. Syst. Softw. 71, 1–2 (2004),
1–10. DOI:https://doi.org/10.1016/S0164-1212(02)00066-3

[20] Junjie Chen, Jibesh Patra, Michael Pradel, Yingfei Xiong, Hongyu Zhang, Dan Hao, and Lu Zhang. 2020. A survey of
compiler testing. ACM Comput. Surv. 53, 1 (2020), 4:1–4:36. DOI:https://doi.org/10.1145/3363562

[21] Chih-Hong Cheng, Georg Nührenberg, and Harald Ruess. 2017. Maximum resilience of artificial neural networks.
In Proceedings of the 15th International Symposium on Automated Technology for Verification and Analysis (Lecture

Notes in Computer Science), Deepak D’Souza and K. Narayan Kumar (Eds.), Vol. 10482. Springer, 251–268. DOI:https:
//doi.org/10.1007/978-3-319-68167-2_18

[22] Siddhartha Chib and Edward Greenberg. 1995. Understanding the Metropolis-Hastings algorithm. Amer. Statist. 49,
4 (1995), 327–335.

[23] Christian Collberg, Clark Thomborson, and Douglas Low. 1997. A Taxonomy of Obfuscating Transformations. Tech-
nical Report. Citeseer.

[24] Saad M. Darwish, Shawkat K. Guirguis, and Mohamed S. Zalat. 2010. Stealthy code obfuscation technique for soft-
ware security. In Proceedings of the International Conference on Computer Engineering & Systems. IEEE, 93–99.

[25] Richard A. DeMillo, Richard J. Lipton, and Frederick G. Sayward. 1978. Hints on test data selection: Help for the
practicing programmer. Computer 11, 4 (1978), 34–41. DOI:https://doi.org/10.1109/C-M.1978.218136

[26] Xiaoning Du, Xiaofei Xie, Yi Li, Lei Ma, Yang Liu, and Jianjun Zhao. 2019. DeepStellar: Model-based quantitative
analysis of stateful deep learning systems. In Proceedings of the ACM Joint Meeting on European Software Engineering

Conference and Symposium on the Foundations of Software Engineering. ACM, 477–487. DOI:https://doi.org/10.1145/
3338906.3338954

[27] Javid Ebrahimi, Anyi Rao, Daniel Lowd, and Dejing Dou. 2018. HotFlip: White-box adversarial examples for text
classification. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics. Association
for Computational Linguistics, 31–36. DOI:https://doi.org/10.18653/v1/P18-2006

[28] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong, Linjun Shou, Bing Qin, Ting Liu,
Daxin Jiang, and Ming Zhou. 2020. CodeBERT: A pre-trained model for programming and natural languages. In
Proceedings of the Conference on Empirical Methods in Natural Language Processing: Findings, Trevor Cohn, Yulan He,
and Yang Liu (Eds.), Vol. EMNLP 2020. Association for Computational Linguistics, 1536–1547. DOI:https://doi.org/
10.18653/v1/2020.findings-emnlp.139

[29] BooFuzz Framework. 2021. Retrieved from https://github.com/jtpereyda/boofuzz.
[30] Sulley Fuzzing Framework. 2017. Retrieved from https://github.com/OpenRCE/sulley.
[31] Gordon Fraser and Andrea Arcuri. 2015. Achieving scalable mutation-based generation of whole test suites. Empir.

Softw. Eng. 20, 3 (2015), 783–812. DOI:https://doi.org/10.1007/s10664-013-9299-z
[32] Milos Gligoric, Lingming Zhang, Cristiano Pereira, and Gilles Pokam. 2013. Selective mutation testing for concurrent

code. In Proceedings of the International Symposium on Software Testing and Analysis. ACM, 224–234. DOI:https:
//doi.org/10.1145/2483760.2483773.

[33] Patrice Godefroid, Hila Peleg, and Rishabh Singh. 2017. Learn&Fuzz: Machine learning for input fuzzing. In Pro-

ceedings of the 32nd IEEE/ACM International Conference on Automated Software Engineering. IEEE Computer Society,
50–59. DOI:https://doi.org/10.1109/ASE.2017.8115618

[34] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. 2015. Explaining and harnessing adversarial examples. In
Proceedings of the 3rd International Conference on Learning Representations. Retrieved from http://arxiv.org/abs/1412.
6572.

[35] Xiaodong Gu, Hongyu Zhang, Dongmei Zhang, and Sunghun Kim. 2016. Deep API learning. In Proceedings of the

24th ACM SIGSOFT International Symposium on Foundations of Software Engineering. ACM, 631–642. DOI:https:
//doi.org/10.1145/2950290.2950334

[36] Rahul Gupta, Aditya Kanade, and Shirish K. Shevade. 2019. Neural attribution for semantic bug-localization in stu-
dent programs. In Proceedings of the Conference on Neural Information Processing Systems. 11861–11871. Retrieved
from http://papers.nips.cc/paper/9358-neural-attribution-for-semantic-bug-localization-in-student-programs.

[37] Richard G. Hamlet. 1977. Testing programs with the aid of a compiler. IEEE Trans. Softw. Eng. 3, 4 (1977), 279–290.
DOI:https://doi.org/10.1109/TSE.1977.231145

[38] W. K. Hastings. 1970. Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57, 1
(1970), 97–109.

[39] Vincent J. Hellendoorn, Christian Bird, Earl T. Barr, and Miltiadis Allamanis. 2018. Deep learning type inference. In
Proceedings of the ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations

of Software Engineering. ACM, 152–162. DOI:https://doi.org/10.1145/3236024.3236051

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 3, Article 50. Pub. date: April 2022.

https://doi.org/10.1109/SPW.2018.00009
https://doi.org/10.1016/S0164-1212(02)00066-3
https://doi.org/10.1145/3363562
https://doi.org/10.1007/978-3-319-68167-2_18
https://doi.org/10.1109/C-M.1978.218136
https://doi.org/10.1145/3338906.3338954
https://doi.org/10.18653/v1/P18-2006
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://github.com/jtpereyda/boofuzz
https://github.com/OpenRCE/sulley.
https://doi.org/10.1007/s10664-013-9299-z
https://doi.org/10.1145/2483760.2483773.
https://doi.org/10.1109/ASE.2017.8115618
http://arxiv.org/abs/1412.6572
https://doi.org/10.1145/2950290.2950334
http://papers.nips.cc/paper/9358-neural-attribution-for-semantic-bug-localization-in-student-programs
https://doi.org/10.1109/TSE.1977.231145
https://doi.org/10.1145/3236024.3236051

Towards Robustness of Deep Program Processing Models 50:37

[40] Xing Hu, Ge Li, Xin Xia, David Lo, and Zhi Jin. 2018. Deep code comment generation. In Proceedings of the 26th

Conference on Program Comprehension. ACM, 200–210. DOI:https://doi.org/10.1145/3196321.3196334
[41] Po-Sen Huang, Robert Stanforth, Johannes Welbl, Chris Dyer, Dani Yogatama, Sven Gowal, Krishnamurthy

Dvijotham, and Pushmeet Kohli. 2019. Achieving verified robustness to symbol substitutions via interval bound
propagation. In Proceedings of the Conference on Empirical Methods in Natural Language Processing and the 9th In-

ternational Joint Conference on Natural Language Processing. Association for Computational Linguistics, 4081–4091.
DOI:https://doi.org/10.18653/v1/D19-1419

[42] Xuan Huo and Ming Li. 2017. Enhancing the unified features to locate buggy files by exploiting the sequential nature
of source code. In Proceedings of the 26th International Joint Conference on Artificial Intelligence. ijcai.org, 1909–1915.
DOI:https://doi.org/10.24963/ijcai.2017/265

[43] Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis Allamanis, and Marc Brockschmidt. 2019. CodeSearchNet
challenge: Evaluating the state of semantic code search. CoRR abs/1909.09436 (2019).

[44] Robin Jia and Percy Liang. 2017. Adversarial examples for evaluating reading comprehension systems. In Proceedings

of the Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics,
2021–2031. DOI:https://doi.org/10.18653/v1/d17-1215

[45] Guy Katz, Clark W. Barrett, David L. Dill, Kyle Julian, and Mykel J. Kochenderfer. 2017. Reluplex: An efficient SMT
solver for verifying deep neural networks. In Proceedings of the 29th International Conference on Computer-aided

Verification (Lecture Notes in Computer Science), Rupak Majumdar and Viktor Kuncak (Eds.), Vol. 10426. Springer,
97–117. DOI:https://doi.org/10.1007/978-3-319-63387-9_5

[46] Jinhan Kim, Robert Feldt, and Shin Yoo. 2019. Guiding deep learning system testing using surprise adequacy. In
Proceedings of the 41st International Conference on Software Engineering (ICSE’19). 1039–1049.

[47] Marius Kloft and Pavel Laskov. 2012. Security analysis of online centroid anomaly detection. J. Mach. Learn. Res. 13
(2012), 3681–3724. Retrieved from http://dl.acm.org/citation.cfm?id=2503359.

[48] Ching-Yun Ko, Zhaoyang Lyu, Lily Weng, Luca Daniel, Ngai Wong, and Dahua Lin. 2019. POPQORN: Quantifying
robustness of recurrent neural networks. In Proceedings of the 36th International Conference on Machine Learning.
(Proceedings of Machine Learning Research), Kamalika Chaudhuri and Ruslan Salakhutdinov (Eds.), Vol. 97. PMLR,
3468–3477. Retrieved from http://proceedings.mlr.press/v97/ko19a.html.

[49] Alexey Kurakin, Ian J. Goodfellow, and Samy Bengio. 2017. Adversarial examples in the physical world. In Proceedings

of the 5th International Conference on Learning Representations. OpenReview.net. Retrieved from https://openreview.
net/forum?id=HJGU3Rodl.

[50] Vu Le, Mehrdad Afshari, and Zhendong Su. 2014. Compiler validation via equivalence modulo inputs. In Proceedings

of the ACM SIGPLAN Conference on Programming Language Design and Implementation. ACM, 216–226. DOI:https:
//doi.org/10.1145/2594291.2594334

[51] Vu Le, Chengnian Sun, and Zhendong Su. 2015. Finding deep compiler bugs via guided stochastic program mutation.
In Proceedings of the ACM SIGPLAN International Conference on Object-Oriented Programming, Systems, Languages,

and Applications. ACM, 386–399. DOI:https://doi.org/10.1145/2814270.2814319
[52] Boao Li, Meng Yan, Xin Xia, Xing Hu, Ge Li, and David Lo. 2020. DeepCommenter: A deep code comment gener-

ation tool with hybrid lexical and syntactical information. In Proceedings of the 28th ACM Joint European Software

Engineering Conference and Symposium on the Foundations of Software Engineering. ACM, 1571–1575. DOI:https:
//doi.org/10.1145/3368089.3417926

[53] Jian Li, Yue Wang, Irwin King, and Michael R. Lyu. 2017. Code completion with neural attention and pointer networks.
CoRR abs/1711.09573 (2017).

[54] Jun Li, Bodong Zhao, and Chao Zhang. 2018. Fuzzing: A survey. Cybersecurity 1, 1 (2018). DOI:https://doi.org/10.
1186/s42400-018-0002-y

[55] Christopher Lidbury, Andrei Lascu, Nathan Chong, and Alastair F. Donaldson. 2015. Many-core compiler fuzzing.
In Proceedings of the 36th ACM SIGPLAN Conference on Programming Language Design and Implementation. ACM,
65–76. DOI:https://doi.org/10.1145/2737924.2737986

[56] Wang Lin, Zhengfeng Yang, Xin Chen, Qingye Zhao, Xiangkun Li, Zhiming Liu, and Jifeng He. 2019. Robustness
verification of classification deep neural networks via linear programming. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition. Computer Vision Foundation/IEEE, 11418–11427. DOI:https://doi.org/10.
1109/CVPR.2019.01168

[57] Cullen Linn and Saumya K. Debray. 2003. Obfuscation of executable code to improve resistance to static disassembly.
In Proceedings of the 10th ACM Conference on Computer and Communications Security. ACM, 290–299. DOI:https:
//doi.org/10.1145/948109.948149

[58] Douglas Low. 1998. Protecting Java code via code obfuscation. XRDS 4, 3 (1998), 21–23. DOI:https://doi.org/10.1145/
332084.332092

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 3, Article 50. Pub. date: April 2022.

https://doi.org/10.1145/3196321.3196334
https://doi.org/10.18653/v1/D19-1419
https://doi.org/10.24963/ijcai.2017/265
https://doi.org/10.18653/v1/d17-1215
https://doi.org/10.1007/978-3-319-63387-9_5
http://dl.acm.org/citation.cfm?id=2503359
http://proceedings.mlr.press/v97/ko19a.html
https://openreview.net/forum?id=HJGU3Rodl
https://doi.org/10.1145/2594291.2594334
https://doi.org/10.1145/2814270.2814319
https://doi.org/10.1145/3368089.3417926
https://doi.org/10.1186/s42400-018-0002-y
https://doi.org/10.1145/2737924.2737986
https://doi.org/10.1109/CVPR.2019.01168
https://doi.org/10.1145/948109.948149
https://doi.org/10.1145/332084.332092

50:38 H. Zhang et al.

[59] Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey Svyatkovskiy, Ambrosio Blanco, Colin B. Clement, Dawn
Drain, Daxin Jiang, Duyu Tang, Ge Li, Lidong Zhou, Linjun Shou, Long Zhou, Michele Tufano, Ming Gong, Ming
Zhou, Nan Duan, Neel Sundaresan, Shao Kun Deng, Shengyu Fu, and Shujie Liu. 2021. CodeXGLUE: A machine
learning benchmark dataset for code understanding and generation. CoRR abs/2102.04664 (2021).

[60] Lei Ma, Felix Juefei-Xu, Fuyuan Zhang, Jiyuan Sun, Minhui Xue, Bo Li, Chunyang Chen, Ting Su, Li Li, Yang Liu,
Jianjun Zhao, and Yadong Wang. 2018. DeepGauge: Multi-granularity testing criteria for deep learning systems.
In Proceedings of the 33rd ACM/IEEE International Conference on Automated Software Engineering. ACM, 120–131.
DOI:https://doi.org/10.1145/3238147.3238202

[61] Nicholas Metropolis, Arianna W. Rosenbluth, Marshall N. Rosenbluth, Augusta H. Teller, and Edward Teller. 1953.
Equation of state calculations by fast computing machines. J. Chem. Phys. 21, 6 (1953), 1087–1092.

[62] Lili Mou, Ge Li, Lu Zhang, Tao Wang, and Zhi Jin. 2016. Convolutional neural networks over tree structures for
programming language processing. In Proceedings of the 30th AAAI Conference on Artificial Intelligence. AAAI Press,
1287–1293. Retrieved from http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/11775.

[63] Blaine Nelson, Benjamin I. P. Rubinstein, Ling Huang, Anthony D. Joseph, Steven J. Lee, Satish Rao, and J. D. Tygar.
2012. Query strategies for evading convex-inducing classifiers. J. Mach. Learn. Res. 13 (2012), 1293–1332. Retrieved
from http://dl.acm.org/citation.cfm?id=2343688.

[64] Rainer Niedermayr, Elmar Jürgens, and Stefan Wagner. 2016. Will my tests tell me if I break this code? In Proceedings

of the International Workshop on Continuous Software Evolution and Delivery. ACM, 23–29. DOI:https://doi.org/10.
1145/2896941.2896944

[65] Augustus Odena, Catherine Olsson, David G. Andersen, and Ian J. Goodfellow. 2019. TensorFuzz: Debugging neural
networks with coverage-guided fuzzing. In Proceedings of the 36th International Conference on Machine Learning

(Proceedings of Machine Learning Research), Kamalika Chaudhuri and Ruslan Salakhutdinov (Eds.), Vol. 97. PMLR,
4901–4911. Retrieved from http://proceedings.mlr.press/v97/odena19a.html.

[66] Jeff Offutt and Wuzhi Xu. 2004. Generating test cases for web services using data perturbation. ACM SIGSOFT Softw.

Eng. Notes 29, 5 (2004), 1–10. DOI:https://doi.org/10.1145/1022494.1022529
[67] Nicolas Papernot, Patrick D. McDaniel, Somesh Jha, Matt Fredrikson, Z. Berkay Celik, and Ananthram Swami. 2016.

The limitations of deep learning in adversarial settings. In Proceedings of the IEEE European Symposium on Security

and Privacy. IEEE, 372–387. DOI:https://doi.org/10.1109/EuroSP.2016.36
[68] Kexin Pei, Yinzhi Cao, Junfeng Yang, and Suman Jana. 2017. DeepXplore: Automated whitebox testing of deep

learning systems. In Proceedings of the 26th Symposium on Operating Systems Principles. ACM, 1–18. DOI:https:
//doi.org/10.1145/3132747.3132785

[69] Igor V. Popov, Saumya K. Debray, and Gregory R. Andrews. 2007. Binary obfuscation using signals. In Proceedings of

the 16th USENIX Security Symposium. USENIX Association. Retrieved from https://www.usenix.org/conference/16th-
usenix-security-symposium/binary-obfuscation-using-signals.

[70] Yao Qin, Nicholas Carlini, Garrison W. Cottrell, Ian J. Goodfellow, and Colin Raffel. 2019. Imperceptible, robust, and
targeted adversarial examples for automatic speech recognition. In Proceedings of the 36th International Conference

on Machine Learning (Proceedings of Machine Learning Research), Kamalika Chaudhuri and Ruslan Salakhutdinov
(Eds.), Vol. 97. PMLR, 5231–5240. Retrieved from http://proceedings.mlr.press/v97/qin19a.html.

[71] Mohit Rajpal, William Blum, and Rishabh Singh. 2017. Not all bytes are equal: Neural byte sieve for fuzzing. CoRR

abs/1711.04596 (2017).
[72] Monirul I. Sharif, Andrea Lanzi, Jonathon T. Giffin, and Wenke Lee. 2008. Impeding malware analysis using condi-

tional code obfuscation. In Proceedings of the Network and Distributed System Security Symposium. The Internet So-
ciety. Retrieved from https://www.ndss-symposium.org/ndss2008/impeding-malware-analysis-using-conditional-
code-obfuscation/.

[73] Chengnian Sun, Vu Le, and Zhendong Su. 2016. Finding compiler bugs via live code mutation. In Proceedings of

the ACM SIGPLAN International Conference on Object-Oriented Programming, Systems, Languages, and Applications.
ACM, 849–863. DOI:https://doi.org/10.1145/2983990.2984038

[74] Sining Sun, Ching-Feng Yeh, Mari Ostendorf, Mei-Yuh Hwang, and Lei Xie. 2018. Training augmentation with ad-
versarial examples for robust speech recognition. In Proceedings of the 19th Annual Conference of the International

Speech Communication Association. ISCA, 2404–2408. DOI:https://doi.org/10.21437/Interspeech.2018-1247
[75] Youcheng Sun, Min Wu, Wenjie Ruan, Xiaowei Huang, Marta Kwiatkowska, and Daniel Kroening. 2018. Concolic

testing for deep neural networks. In Proceedings of the 33rd ACM/IEEE International Conference on Automated Software

Engineering (ASE’18). 109–119.
[76] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian J. Goodfellow, and Rob Fer-

gus. 2014. Intriguing properties of neural networks. In Proceedings of the 2nd International Conference on Learning

Representations. Retrieved from http://arxiv.org/abs/1312.6199.

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 3, Article 50. Pub. date: April 2022.

https://doi.org/10.1145/3238147.3238202
http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/11775
http://dl.acm.org/citation.cfm?id=2343688
https://doi.org/10.1145/2896941.2896944
http://proceedings.mlr.press/v97/odena19a.html
https://doi.org/10.1145/1022494.1022529
https://doi.org/10.1109/EuroSP.2016.36
https://doi.org/10.1145/3132747.3132785
https://www.usenix.org/conference/16th-usenix-security-symposium/binary-obfuscation-using-signals
http://proceedings.mlr.press/v97/qin19a.html
https://www.ndss-symposium.org/ndss2008/impeding-malware-analysis-using-conditional-code-obfuscation/
https://doi.org/10.1145/2983990.2984038
https://doi.org/10.21437/Interspeech.2018-1247
http://arxiv.org/abs/1312.6199

Towards Robustness of Deep Program Processing Models 50:39

[77] Kai Sheng Tai, Richard Socher, and Christopher D. Manning. 2015. Improved semantic representations from tree-
structured long short-term memory networks. In Proceedings of the 53rd Annual Meeting of the Association for Com-

putational Linguistics and the 7th International Joint Conference on Natural Language Processing of the Asian Federation

of Natural Language Processing. The Association for Computer Linguistics, 1556–1566. DOI:https://doi.org/10.3115/
v1/p15-1150

[78] Yuchi Tian, Kexin Pei, Suman Jana, and Baishakhi Ray. 2018. DeepTest: Automated testing of deep-neural-network-
driven autonomous cars. In Proceedings of the 40th International Conference on Software Engineering. ACM, 303–314.
DOI:https://doi.org/10.1145/3180155.3180220

[79] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser,
and Illia Polosukhin. 2017. Attention is all you need. In Proceedings of the Annual Conference on Neu-

ral Information Processing Systems. 5998–6008. Retrieved from https://proceedings.neurips.cc/paper/2017/hash/
3f5ee243547dee91fbd053c1c4a845aa-Abstract.html.

[80] Oscar Luis Vera-Pérez, Martin Monperrus, and Benoit Baudry. 2018. Descartes: A PITest engine to detect pseudo-
tested methods: Tool demonstration. In Proceedings of the 33rd ACM/IEEE International Conference on Automated

Software Engineering. ACM, 908–911. DOI:https://doi.org/10.1145/3238147.3240474
[81] Dilin Wang, ChengYue Gong, and Qiang Liu. 2019. Improving neural language modeling via adversarial training.

In Proceedings of the 36th International Conference on Machine Learning (Proceedings of Machine Learning Research),
Kamalika Chaudhuri and Ruslan Salakhutdinov (Eds.), Vol. 97. PMLR, 6555–6565. Retrieved from http://proceedings.
mlr.press/v97/wang19f.html.

[82] Shen Wang, Zhengzhang Chen, Xiao Yu, Ding Li, Jingchao Ni, Lu-An Tang, Jiaping Gui, Zhichun Li, Haifeng Chen,
and Philip S. Yu. 2019. Heterogeneous graph matching networks for unknown malware detection. In Proceedings of

the 28th International Joint Conference on Artificial Intelligence. ijcai.org, 3762–3770. DOI:https://doi.org/10.24963/
ijcai.2019/522

[83] Wenhan Wang, Ge Li, Bo Ma, Xin Xia, and Zhi Jin. 2020. Detecting code clones with graph neural network and
flow-augmented abstract syntax tree. In Proceedings of the 27th IEEE International Conference on Software Analysis,

Evolution and Reengineering. IEEE, 261–271. DOI:https://doi.org/10.1109/SANER48275.2020.9054857
[84] Xinran Wang, Yu Xiang, Jun Gao, and Jie Ding. 2020. Information laundering for model privacy. CoRR abs/2009.06112

(2020).
[85] Huihui Wei and Ming Li. 2017. Supervised deep features for software functional clone detection by exploiting lexical

and syntactical information in source code. In Proceedings of the 26th International Joint Conference on Artificial

Intelligence. ijcai.org, 3034–3040. DOI:https://doi.org/10.24963/ijcai.2017/423
[86] Tsui-Wei Weng, Huan Zhang, Hongge Chen, Zhao Song, Cho-Jui Hsieh, Luca Daniel, Duane S. Boning, and Inderjit S.

Dhillon. 2018. Towards fast computation of certified robustness for ReLU networks. In Proceedings of the 35th Inter-

national Conference on Machine Learning (Proceedings of Machine Learning Research), Jennifer G. Dy and Andreas
Krause (Eds.), Vol. 80. PMLR, 5273–5282. Retrieved from http://proceedings.mlr.press/v80/weng18a.html.

[87] Fuzzing with Spike. 2017. Retrieved from https://samsclass.info/127/proj/p18-spike.htm.
[88] Eric Wong and J. Zico Kolter. 2018. Provable defenses against adversarial examples via the convex outer adversarial

polytope. In Proceedings of the 35th International Conference on Machine Learning (Proceedings of Machine Learning

Research), Jennifer G. Dy and Andreas Krause (Eds.), Vol. 80. PMLR, 5283–5292. Retrieved from http://proceedings.
mlr.press/v80/wong18a.html.

[89] Gregory Wroblewski. 2002. General method of program code obfuscation. (2002).
[90] Weiming Xiang, Patrick Musau, Ayana A. Wild, Diego Manzanas Lopez, Nathaniel Hamilton, Xiaodong Yang, Joel A.

Rosenfeld, and Taylor T. Johnson. 2018. Verification for machine learning, autonomy, and neural networks survey.
CoRR abs/1810.01989 (2018).

[91] Xiaofei Xie, Lei Ma, Felix Juefei-Xu, Minhui Xue, Hongxu Chen, Yang Liu, Jianjun Zhao, Bo Li, Jianxiong Yin, and
Simon See. 2019. DeepHunter: A coverage-guided fuzz testing framework for deep neural networks. In Proceedings

of the 28th ACM SIGSOFT International Symposium on Software Testing and Analysis. ACM, 146–157. DOI:https:
//doi.org/10.1145/3293882.3330579

[92] Hui Xu, Yangfan Zhou, Yu Kang, and Michael R. Lyu. 2017. On secure and usable program obfuscation: A survey.
CoRR abs/1710.01139 (2017).

[93] Huangzhao Zhang, Zhuo Li, Ge Li, Lei Ma, Yang Liu, and Zhi Jin. 2020. Generating adversarial examples for holding
robustness of source code processing models. In Proceedings of the 34th AAAI Conference on Artificial Intelligence.

[94] Huangzhao Zhang, Hao Zhou, Ning Miao, and Lei Li. 2019. Generating fluent adversarial examples for natural lan-
guages. In Proceedings of the 57th Conference of the Association for Computational Linguistics. Association for Com-
putational Linguistics, 5564–5569. DOI:https://doi.org/10.18653/v1/p19-1559

[95] Jian Zhang, Xu Wang, Hongyu Zhang, Hailong Sun, Kaixuan Wang, and Xudong Liu. 2019. A novel neural source
code representation based on abstract syntax tree. In Proceedings of the 41st International Conference on Software

Engineering. IEEE/ACM, 783–794. DOI:https://doi.org/10.1109/ICSE.2019.00086

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 3, Article 50. Pub. date: April 2022.

https://doi.org/10.3115/v1/p15-1150
https://doi.org/10.1145/3180155.3180220
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://doi.org/10.1145/3238147.3240474
http://proceedings.mlr.press/v97/wang19f.html
https://doi.org/10.24963/ijcai.2019/522
https://doi.org/10.1109/SANER48275.2020.9054857
https://doi.org/10.24963/ijcai.2017/423
http://proceedings.mlr.press/v80/weng18a.html
https://samsclass.info/127/proj/p18-spike.htm
http://proceedings.mlr.press/v80/wong18a.html
https://doi.org/10.1145/3293882.3330579
https://doi.org/10.18653/v1/p19-1559
https://doi.org/10.1109/ICSE.2019.00086

50:40 H. Zhang et al.

[96] J. M. Zhang, M. Harman, L. Ma, and Y. Liu. 2020. Machine learning testing: Survey, landscapes and horizons. IEEE

Trans. Softw. Eng. (2020). DOI:https://doi.org/10.1109/TSE.2019.2962027
[97] Mengshi Zhang, Yuqun Zhang, Lingming Zhang, Cong Liu, and Sarfraz Khurshid. 2018. DeepRoad: GAN-based

metamorphic testing and input validation framework for autonomous driving systems. In Proceedings of the 33rd

ACM/IEEE International Conference on Automated Software Engineering. ACM, 132–142. DOI:https://doi.org/10.1145/
3238147.3238187

[98] Jianyi Zhou, Feng Li, Jinhao Dong, Hongyu Zhang, and Dan Hao. 2020. Cost-effective testing of a deep learning model
through input reduction. In Proceedings of the 31st IEEE International Symposium on Software Reliability Engineering.
IEEE, 289–300. DOI:https://doi.org/10.1109/ISSRE5003.2020.00035

[99] William Zhu and Clark Thomborson. 2005. A provable scheme for homomorphic obfuscation in software security.
In Proceedings of the IASTED International Conference on Communication, Network and Information Security. 208–212.

Received October 2020; revised November 2021; accepted November 2021

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 3, Article 50. Pub. date: April 2022.

https://doi.org/10.1109/TSE.2019.2962027
https://doi.org/10.1145/3238147.3238187
https://doi.org/10.1109/ISSRE5003.2020.00035

